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Front Matter

most slides are inspired by or directly lifted
(these will be attributed) from lectures by:

Paul Lewis, Mark Holder, David
swoft'tord, & John Huelsenbeck

If you wish to see these in person or access their materials
go to the Workshop on Molecular Evolution at MBL website
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Phylogenetics Lecture Plan &

e some review and Iintroduction

e some basic probability

calculating likelihood
substitution models 9

maximum likelihood methods

e Bayesian thinking

e Nierarchical models

e divergence-time estimation
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Likelihood of a Single DNA Sequence

first 32 nucleotides of the n-globin gene of gorilla:

AAGTCCTTGAGAAATAAACTGCACACACT

,C—’/TcﬂrA7TA7rc;7TT7T07TC'7TT7TT7rg7TA7rg7TA7TA7TA7TT7TA7TA7TA7T07TT7rg7T07TA7T07TA7T07TA7TC7I'T’/'l'(;7TG
12 7 7 6

= TA TTATT~ATT % ; ;
A TCTGTT *we dssume sites dre mdependent

logL = 12log(ma) + 7log(me) + 7log(mg) + 6 log(mr)

r(A) — WD we can already see by eye-balling this
that a model allowing unequal base
Pr(C) = m¢ frequencies will fit better than a model
Pr(G) = ng that assumes equal base frequencies
because there are about twice as many
r( )=

T/ As as there are Cs, Gs and Ts.
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Likelihood of the Simplest Tree

sequence 1

seguence 2

To keep things simple, assume that the sequences are only 2

nucleotides long:

s ?ﬁT )
Site 1 . - site 1 Site 2

Site 2
L = £1£2
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Maximum Likelihood Estimation

first 32 nucleotides of the Yn-globin gene of gorilla & orangutan:

gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG
orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

- 130 -2
[ = 1 1 + §6—4at 1 l - 16—40415
'\ 4 4 4 | |\4 4 4 |
0 002 0.04 006 0.08 0.1
-52 L ! 1 1 .
53 -
-54 - Plot of log-likelihood as a function
-55 - of the quantity oz
-56 -
-57 -
-58 -
59 - € Maximum likelihood estimate
60 - (MLE) of ot is 0.021753
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Substitution Rate

number of substitutions — substitution rate X time

A C T

the rate at which
(X anexisting A
changestoal

the overall substitution rate Is 3o, so the expected
number of substitutions (v) is:

v = 3at
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Rate and Time are Confounded

evolutionary distance

sequence 100 substltutlons sequence 2

(100 substltutlons (1 substitution

1 million years — 100 million years
million years

million years

sequence data can only provide information about the
evolutionary distance as rate X time, we cannot identify the

absolute rate or time

we will cover how to estimate substitution rates and divergence
times later
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Evolutionary Distances
HE N

sequence 1 seguence 2
model expected number of substitutions: v = {r}t
JC69 v ={3a}t

"""""""" F81 | v = {2u(rrry + manq + Tomr)}t

"""""""" K0 | v={Bk+2}
HKY v ={2u|rrmy + Kk(mame + o) |}

in the formulas above, the overall rate r (in curly brackets) is a function of
all parameters in the substitution model

one substitution model parameter is always determined
from the edge length; the others are usually global (i.e.
same value applies to all edges)
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Likelihood of an Unrooted Tree

(data shown only for 1 site)

/, states at the tips

are observed

oncestrol states

are not really

arbitraril chosen known (more on
to serve as the this shortly)
root node
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Likelihood for a Single Site k

V5 is the expected

e number of
substitutions for just

-y

“ U4 this one branch

@ each piji(vx) is a function corresponding to 9 \
the probability of transitioning from state

i to state j given some branch length vy

Lk _ i[% + §6—41/1/3] [1 4+ §€_4U2/3] [l . l6—41/3/3] [1 o 16—41/4/3] [1 + §6—41/5/3]

4 4 4 4 4 4 4 4 4
/ / / T T
pAA( V1) paA(V2) pac(vs) per(vy) pcee(vs)

D rule !
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Likelihood for a Single Site

Brute force approach would be to calculate Ek for all 16
combinations of ancestral states and sum them

2 g %3 B
@ 2 g2
4| 2 s & 2
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Likelihood for a Single Site

The pruning algorithm gives us the same result in much less time

C
|

many calculations can be done just
A once and then reused several times

P

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on slides by Paul Lewis https.//molevolworkshop.github.io/faculty-lewis)
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Felsenstein, J. 1981. Evolutionary trees from DNA sequences:
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The Pruning Algorithm
the probability the n@‘ n n n

l’lOd@ 1s an A glven

the observed data y

the probablhty the

node 1s an T glVQl’l

the observed data

the probablhfy the

node is an C given th bability th
the observed data noedfflz :n lGl ylvez com p u Te S .I. h e
the observed doﬁra COﬂdiTiOﬂOl

B | probabilities

at each node

the algorithm uses
recursion to traverse .
the tree

y
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The Pruning Algorithm

1

2

each node is
visited following

the pruning algorithm is postorder traversal

also known as the “sum-

product algorithm”, a
dynamic programming
algorithm for performing
inference on graphical
models (hote that “sum”
and “product” refer to
“OR” & “AND”)

v
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/(D) 2(2)

The Pruning Algorithm o0 =0

=0 =1
¢ VKR AR 01 16 o W=o -0

=1 =0

1 Vs we use the AND rule to
combine the conditional
probabilities for a given

. . state at an ancestral
node )

6(3) (szj V1 ) (Zp’bj 1% 6(2)>

conditional probability

g(a}) the probability of the observed states pi(v) = l(l — 6_4V)J
; if the ancestral node x had state | 4
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The Pruning Algorithm

PIEb o | o P&l o | .

as) | W

we use the OR rule to
combine the conditional
probabilities of different

starting states
AL

Lsite = TA X ES) + e X 415) + T X eﬁ? + 7T X Kg?)

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University

o A 1 1o 6 o

once all descendant

nodes in the tree have

been visited, the
probability vector at
the root (0) can be
calculated

W




The Pruning Algorithm
489 o | o i o o BAWICY 1 | o

for this simple example
we are not using log

likelihoods

—

Lsite = T4 X ff&f) + e X 5(05) + T X 6(6;5) + 7T X ﬁf(z?)
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Where I1s the model?

here is what we have been assuming so far:
1. substitutions occur according to a Markov process

2. the equilibrium base frequencies are all equal
(my = 7o =g == 0.25)

3. the rate of substitution is equal for all substitution types

(rac = Fag = Far = feg = et = I'g7)

4. rates of substitution are time reversible (€.9., e = rca)
5. the expected number of substitutions is v = Sat

the Jukes-Cantor (1969) substitution model!

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University



How does it all fit together?

this graphical model shows how we assume our DNA
data are conditionally dependent on the tree (with branch

lengths) and substitution model

you will see a lot more models
depicted as drected-acyclic
graphs when we gef 1o D NA data
Bayesian inferencel
o

the node containing the data is shaded gray to indicate
that these values are observed and cannot change

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University




Macroev

Substitution Models

models describing discrete character
change are substitution models

these take are also called continuous-time
Markov chain (CTMC) models

these models all possess the Markov
property: the probability that a character

will be In a given state at time ¢, only
depends on its state at time O

olution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University



What is a Markov process?

lineage starts a substitution occurs

with base T at changing T = C
some site

MARKOV PROPERTY O [

it is irrelevant that to predict which base will be
at this site before time we only need to know which
0 (this makes it a base was present at time (
Markov process!) (C in this case)

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on slides by Paul Lewis https.//molevolworkshop.githubio/faculty-lewis)
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Transition Probabilities

ineage starts a substitution occurs
with bage T at \changing ToC
some site

0—0—06—

0 t

the transition probability is the conditional
probability that there is a C present at a site after

time { given that there was a C present at time (0

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on slides by Paul Lewis https.//molevolworkshop.github.io/faculty-lewis)
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Toy Example: Observing a Lineage Evolving

o000 06006000000

e \We have a time machine that can only
go back in time at 10,000 year intervals.

 \We want to estimate s, the probability

that the site will be different the next time
we sample.

 For 10 time-travel events, our data might
look like: GGCCCCCCCA

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University
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Toy Example: Observing a Lineage Evolving

Oo-000000000

The simplest model

s Is the probabillity of a

state switch between
samples and Is the same
over all intervals

each state is equally likely
when a switch occurs

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University
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Toy Example: Observing a Lineage Evolving

l 1 2 3 4 5 6 7 8 9 10

(1-5) (-s5) (-5 (-5 (%)

X = GGCCCCCCCA

Pr(X | s) =7

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on demo by Mark Holder phylo.bio ku.edu/mephytis/tex/discrete-time-and-state-Markov.pdf
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Toy Example: Observing a Lineage Evolving

X (O~ -0-000000-0
l 1 2 3 4 5 6 7 8 9 10

Pr(x; | 5) <%> (1 =y5) <§> (l1-s) A=-95) (Ad=-5) A=-5) A=-5 (A-3) (%)

L(s) = Pr(X | s) = HPr(x,. B n, = number of adjacent
i=1 sites that are different

3 \)

1 M .
= Z(1 — s)”s(i) n. = number of adjacent
sites that are the same

the AND rule !

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on demo by Mark Holder phylo.bio.kuedu/mephytis/tex/discrete-time-and-state-Markov.pdf)
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Toy Example: Observing a Lineage Evolving

L(s) = Pr(X | 5) = ﬁPr(xi B With a sequence of
- samples, we can
compute L(s) over
a range of plausible
values of § to get
the maximumnr
Ikelihood estimate

MLE.

\)
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Demo:
http://phylo.bio.ku.edu/mephytis/disc-state-disc-time-Markov/index.html

See discrete-time-and-state-Markov.pdf for notes and background information. See the missing data version here

Simulation: Inferential stats:

True color switch probability = 0.44 n-1=0 # observed transitions
O ng=0 number of color changes
”» ns =0 # adjacent samples with same color

# samples per button click: §=? estimate of the switch probability

{'\:J Ln Likeli hood Move to probability scale |

1

Simulate: Clear | Draw next 1 sample(s) I
Simulated data (n = 0):

T T T T T T T T T 1
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Back to the demo table of contents...

Source code at https://github.com/mtholder/mephytis

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University
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Jukes-Cantor (JC69) Transition Probabilities

{
|

ne probabl

n state G a

ity that a site starting in state T will end up

ter time tr when the individual substitution

rates are all a

1
—4dat) __
pra(t) = y —(1—e ") =Pr(G | T, at)
JCB9 has only 1 unknown parameter: at
the symbol € represents REMEMBE.R:
the bose of the natural 1)
logarithms: its value is al = —
2. 718281828"}590"}5 3

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on slides by Paul Lewis https.//molevolworkshop.githubio/faculty
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Jukes-Cantor (JC69) Transition Probabilities

under this model the probability of substituting one
state for another is the same for all types

pac(t) =pac(t) =par(t) = pcc(t) = pcr(t) = par(?)

and the probability of staying at the same state is the
same for all states

1 3 —4at

paa(t) = pcc(t) = pcaa(t) = prr(t) = 1T 7€

remember: the process is time-reversible, so pac(t) = pca(t)

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on slides by Paul Lewis https.//molevolworkshop.githubio/faculty-lewis)
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Parameters of Substitution Models

the CTMC substitution models have two important
sets of parameters:

equilibrium frequencies exchangeability rates

maA, TCc, g, TTT rac, TAG, TAT,
rea, e, "Gt
the long-term stationary

distribution of the relative rates of
nucleotide states each substitution type

these parameters are combined in the instantaneous rate
matrix, which allows us to compute the transition probabillities

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University



Instantaneous Rate Matrix “sesic’a

defines the instantaneous rate of change from one
base to another for a given substitution model

Q JC69 —

also called the Q matrix and allows us to compute the
transition probabillities for any given time ¢ needed to
calculate the likelihood of the model

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University



J C69 Q M atrlx free parameters: a

only has 1 free parameter a because the stationary
frequencies and exchangeability rates are equal

—3(a) o o o

B o —3(a) o o

Qcey = Q Qa —3(a) o
o o o —3(a)

How do you go from Q@ to the transition probability
matrix”

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules.
Pages 21-132 in H. N. Munro (ed.), Mammalian Protein Metabolism.
Academic Press, New York.
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Transition Probability Matrix

for any Q matrix, we can calculate the transition

porobabilities for all the ways the process can start in
one state and end in another, or the same state, after
time ¢

we simply have to multiply the matrix by ¢t and then take
the exponential

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University



Transition Probability Matrix

we represent the matrix of transition probabillities such
that the values are functions that correspond to the
probability of going from state i to state j after time ¢

paa(t) pac(t) pac(t) par(t)
P(t) = ¢Q' — pca(t) pcc(t) pca(t) por(t)
pca(t) pcc(t) pcec(t) per(t)
| pra(t) prc(t) pra(t) prr(t)
every row of P(t) when ¢ = e, p;(t) = 1/4

because so many substitutions
y have occurred that the end
state Is etfectively random

must sum to 1

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University




JC69 P(t) Matrix

for JC69, we only have to compute two probabilities:

po(t): when the end state is the same as the starting state

pi(t): when the end state is different from the starting state

po(t) p1(t) pi(t) pi(t) ) L4 3 dan
p1(t) po(t) pi(t) pi(t) po(t) = 7 + e %
P t , where
0= 10 ml) polt) o) pi(t) = 1 — Tetot
p1(t) pi(t) pi(t) polt)
for more detail on this and other substitution REMEMBER-
models see: 1
Yang (2014) Molecular Evolution: A Statistical ol = —
Approach, Chapter 1 3
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K80 (aka K2P) Q Matrix

accounts for biases in types of substitutions based on

blochemical properties

free parameters: «, f

has 2 free parameters: the transition rate («) and transversion

rate (p)

—a — 203 5
Qxso = g _aﬁ_ 2
5 o

Kimura, M. 1980. A simple method for estimating evolutionary rate
of base substitutions through comparative studies of nucleotide
sequences. Journal of Molecular Evolution 16:111-120.

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University

84

B
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B

B

84

b
—a—20

transition: A«—G or C—T
transversion: A«—C, C«——G, AT,



K80 (aka K2P) - Re-parameterized

you will commonly see this model parameterized so that
our parameter of interest is the transition-transversion

rate ratio («)

free parameters: x and f

—B(k +2) p Kp p
i Kp p —p(k + 2) p
p Kp p —B(k + 2)

K80 collapses to JCB9 if k =1, i.e., a=f
K ==

Kimura, M. 1980. A simple method for estimating evolutionary rate lB

of base substitutions through comparative studies of nucleotide
sequences. Journal of Molecular Evolution 16:111-120.

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on slides by Paul Lewis https.//molevolworkshop.githubio/faculty-lewis)



https://molevolworkshop.github.io/faculty-lewis/
https://molevolworkshop.github.io/faculty-lewis/

F81 Q Matrix

eqgual exchangeability rates and unequal
equilibrium base frequencies

free parameters: a, 7a, 7c, 7G

—a(l —7my) ToQ vele T Q

B TAQ —a(l — 7o) TGO TTQ

Qrs1 = T A TOQ —a(l — 7g) TTQ
| TAQ ToQ vele: —a(l — )

F81 collapses to JCB9 if za = 7c = ng = 7T

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a
maximum likelihood approach. Journal of Molecular Evolution
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H KY85 Q M atrlx free parameters: «, f, za, nc, nc

unequal rates for transitions and transversions
and unequal equilibrium base frequencies

— e Tabk TP
TAB — TgB TPk

QHKY85 T WA,BH) WCB . 7TT5
TAB TwobKk  TaP —
Ge dash Just
HKY collapses to F81 if x = 1 means that the

_ value that goes
HKY collapses to K80 if here makes the

row sum o 0
TA=TIC=7TG =TT

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating the
human-ape splitting by a molecular clock of mitochondrial
DNA. Journal of Molecular Evolution 21:160-174.
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GTR Q M atrlx free parameters: u, za, nc, 7, a, b, ¢, d, e

the most general model: unequal rates tor all substitution
types and unequal equilibrium base frequencies

— Toall Taobu Trcu
TAQU — Tqdu  TTeu
mabu mTodu — mr f
mACU Toeu Tafu —

Qarr =

GTR collapsesto HKY ifa=c=d=f=fand b =¢e =«p

| GTR collapses to F81 if:
Lanave, C., G. Preparata, C. Saccone, and G. Serio.

1984. A new method for calculating evolutionary a=b=c=d=e-= f=1
substitution rates. Journal of Molecular Evolution

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University (based on slides by Paul Lewis https.//molevolworkshop.githubio/faculty-lewis)
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How do | find the best tree?

we can use the maximum likelihood as an optimality
criterion to search for the best tree topology, branch
lengths, and model parameters that fit our data

s

How can we find the peak in our parameter space?

Macroevolution (BIOL 465X & EEOB 565X) Spring 2022 — lowa State University



Macroev

Maximum Likelihood Methods

finding the tree with the highest likelihood is difficult

there is a vast number of possible tree topologies
for even small datasets

the likelihood “landscape”™ may have more than one
peak (local optima)

we not only have to find the tree topology that
maximizes the likelihood, we also have to find
branch lengths and values for the other free

parameters of our substitution mode
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Heuristic Search Methods

to traverse state space, we use heuristic searching methods
to attempt to find the global optimum set of parameter values

iLOCAL OPTIMUM

GLOBAL OPTIMUM
(MAXIMUM LIKELIHOOP)

LIKELIHOOPD

for a 20-taxon dataset
under GTR we need
to optimize: the tree

topology, u, za, zc, na,
a, b, c d e and 37
branch lengths
——
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Heuristic Search Methods
the general concept of a heuristic tree search

A

. start with a tree topology and parameter values

—

Y A

2. calculate the likelihood for the starting tree

How do you know
when to stop?

¥

LIKELIHOOP

3. look at some similar trees

4. calculate the likelihoods of the new trees

You don'’t!
5. see if your one of your new trees is better than your starting tree

6. return to step 3!
——

—
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Macroev

Heuristic Search Runtimes

heuristic searches can lead to long
runtimes depending on:

e the number of

tree topologies to evaluate

* the time to compute the likelihood

these are a func

lon of the number of

seguences and

the number of characters

N the data matrix (molecular sites or
morphological characters)
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Many More Heuristic Search Algorithms

* swapping need not include all neighbors (RAxXML,
reconlimit in PAUP¥)

* “lazy” scoring of swaps (RAXML)

* ignoring (at some stage) interactions between different
branch swaps (PHYML)

* stochastic searches
+ genetic algorithms (GAML, MetaPIGA, GARLI)
+ simulated annealing

* divide and conguer methods (the sectortial searching of
Goloboff, 1999; Rec-I-DCM3 Roshan 2004)

* data perturbation methods (e.g. Kevin Nixon’s “ratchet”)
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