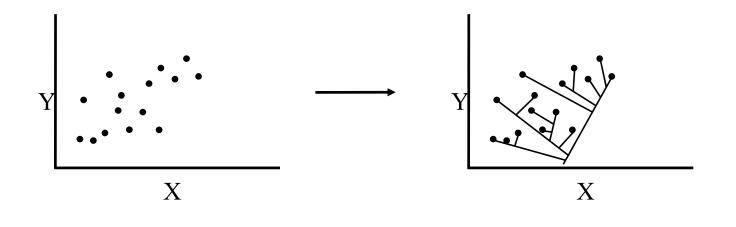
Phylogenetic Comparative Methods: II

Comparative Evolutionary Biology

Last time:

-Taxa are not independent

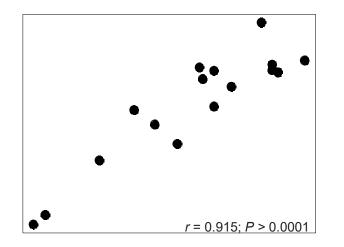
-Ignore evolutionary history AT ONE'S PERIL!



Phylogenetic comparative methods <u>*condition*</u> the data on the phylogeny to account for lack of independence during the analysis

Continuous Data: The Problem

Issues arises with both discrete and continuous traits

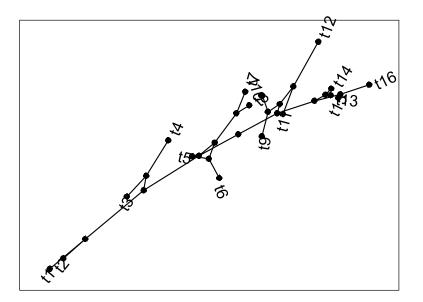


Say we have this correlation,

Here is the same pattern with the phylogeny superimposed

Clearly, closely related taxa are similar.

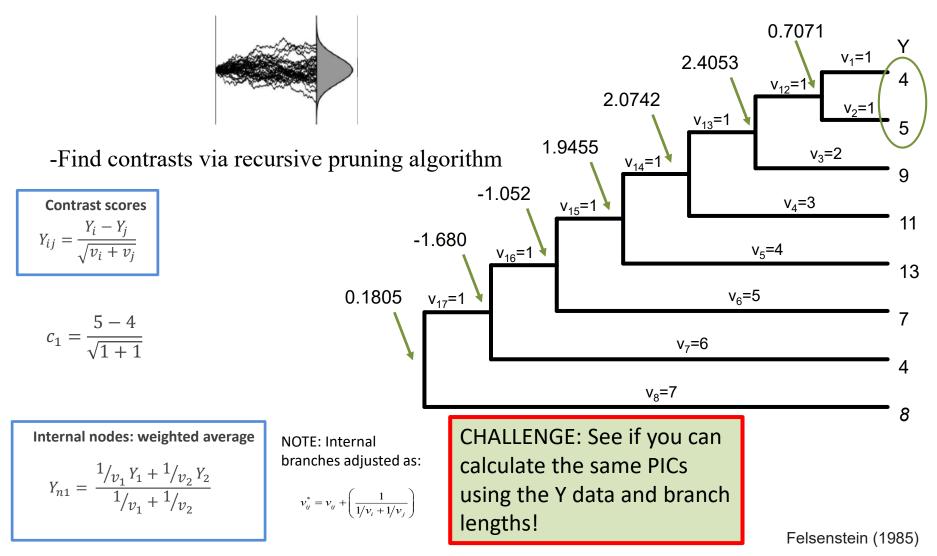
How can we account for this?



Continuous Data: Independent Contrasts

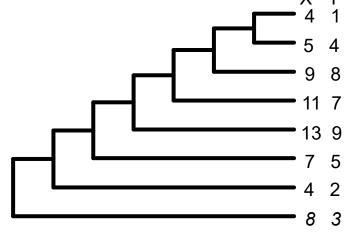
Phylogenetically Independent Contrasts (PIC)

Construct contrast scores at tree nodes, which are *evolutionarily independent of one another* -Based on a Brownian motion null model of trait evolution

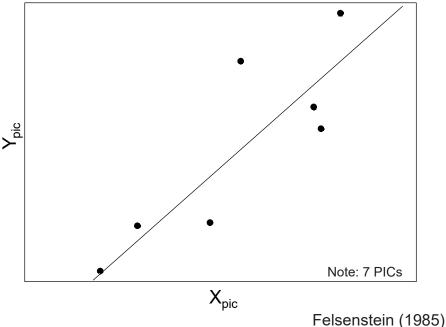


Testing Associations: Independent Contrasts

How do we test trait correlations with PIC?

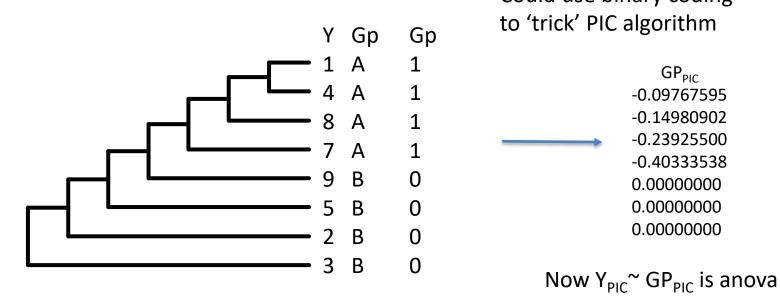


1: Calculate X_{pic} & Y_{pic} pic.x pic.y 0.1805090 -0.6229475 -1.6805047 -1.4447758 -1.0520183 -0.6755435 1.9455001 1.3404970 2.0742519 0.9723056 2.4053512 2.9398737 0.7071068 2.1213203



PIC Challenges: ANOVA Models

PIC works great for regression/correlation What about ANOVA (Y~gp)? Could use binary coding



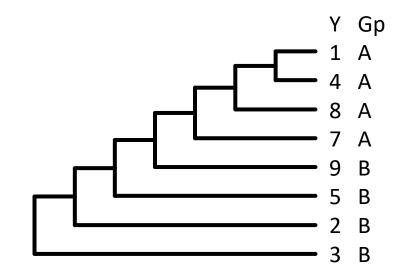
But what about 3 or more groups? Solutions possible, but far from obvious*

*NOTE: Algebraic solution is to use *k*-1 binary columns for *k* groups. PICs are obtained for each, and the set of GP_{PIC} columns treated as the independent variables. This will work, but algebra must be done by hand, as canned functions will not generate proper null model for test (DCA has never seen this done)

Testing Associations: "Phylogenetic" ANOVA

For Phy-ANOVA, a simulation approach can be used

- 1: Perform NON-PHYLOGENETIC ANOVA
- 2: Simulate many Y datasets on phylogeny under BM
- 3: Evaluate simulated datasets
- 4: Compare observed ANOVA output to distribution



Digression: BM Simulation

How does one simulate data?

Point-estimates:

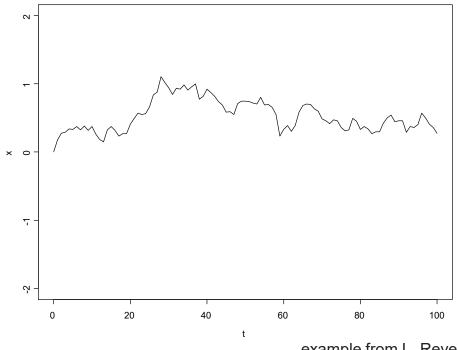
random draws from a distribution

> rnorm(1) -0.9698378

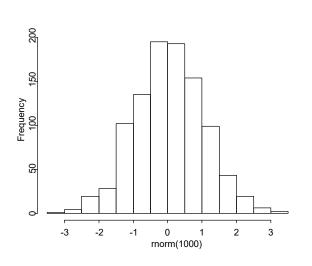
> hist(rnorm(1000))

BM over time: Cumulative sum of random draws for many time steps

t <- 0:100 # time sig2 <- 0.01 ## first, simulate a set of random deviates x <- **rnorm**(n = **length**(t) - 1, sd = **sqrt**(sig2)) ## now compute their cumulative sum x <- c(0, cumsum(x)) plot(t, x, type = "|", ylim = c(-2, 2))



example from L. Revell http://www.phytools.org/eqg/Exercise_4.1/

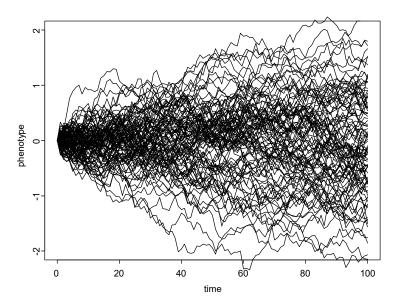


Digression: BM Simulation

How does one simulate data?

Many BM runs over time:

nsim <- 100
X <- matrix(rnorm(n = nsim * (length(t) - 1), sd = sqrt(sig2)), nsim,
length(t) - 1)
X <- cbind(rep(0, nsim), t(apply(X, 1, cumsum)))
plot(t, X[1,], xlab = "time", ylab = "phenotype", ylim = c(-2, 2), type =
"I") apply(X[2:nsim,], 1, function(x, t) lines(t, x), t = t)</pre>

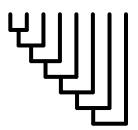


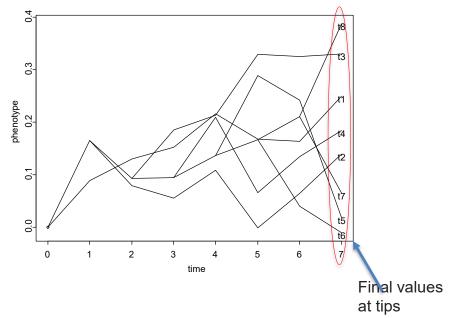
BM on phylogeny:

Same idea, but keep track of branches

<<Code skipped here>>

Many R functions do this: sim.char, fast.BM, etc.





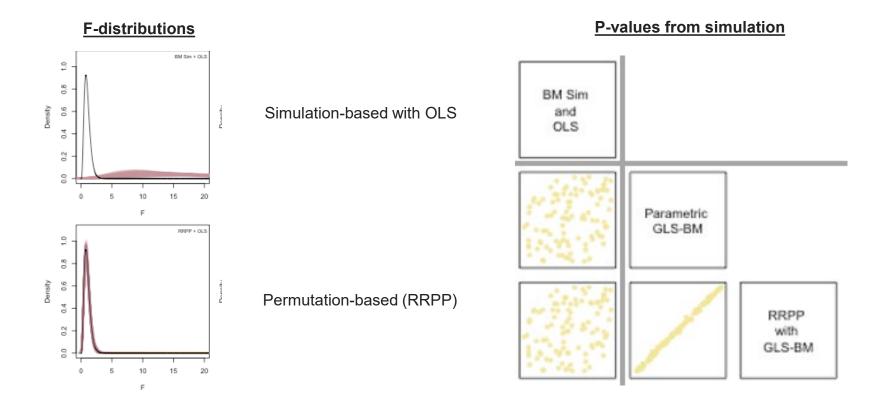
DCA Programming note: one can also simulate MVN data and post-multiply (project) by the phylogenetic covariance matrix

examples from L. Revell http://www.phytools.org/eqg/Exercise_4.1/

"Phylogenetic" ANOVA": Problem

PROBLEM: Typical approach does NOT condition data on phylogeny: It is OLS-based ANOVA with BM simulations (wrong model, evolutionary

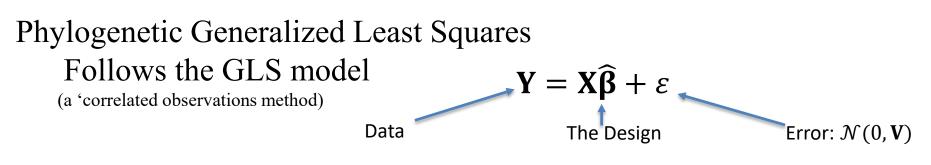
relationships ignored!)



Need a better approach (PGLS: next)

Adams and Collyer (2022)

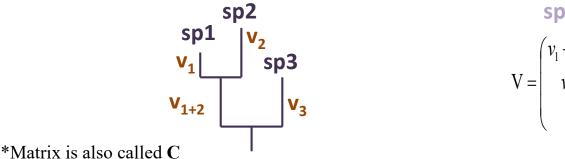
Testing Associations: PGLS



-error (ϵ) is *not iid*, but contains expected covariation as described by phylogeny (V)

V = *phylogenetic covariance matrix**

-Describes amount of evolutionary time species *share* via common ancestors (and thus how similar their trait values are expected to be)



	sp1	sp2	sp3	
	$(v_1 + v_{1+2})$	sp2 v_{1+2} $v_2 + v_{1+2}$	0	sp1
V =	<i>v</i> ₁₊₂	$v_2 + v_{1+2}$	0	sp2
	0	0	v_3	sp3

Grafen (1989) For review see Adams and Collyer (2018a)

Testing Associations: PGLS

Solving PGLS: must find $\hat{\beta}$

$$\mathbf{Y} = \mathbf{X}\widehat{\boldsymbol{\beta}} + \varepsilon$$

Parameters obtained using standard GLS approach:

$$\boldsymbol{\beta} = (\mathbf{X}^{\mathsf{t}}\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{V}^{-1}\mathbf{Y}$$

$$V = \begin{pmatrix} v_{1}+v_{1+2} & v_{1+2} & 0 \\ v_{1+2} & v_{2}+v_{1+2} & 0 \\ 0 & 0 & v_{3} \end{pmatrix} \quad v_{1+2} \quad v_{3}$$

-PGLS is a 'weighted' GLS, where weights are inverse of structured error

But how did we get this equation?

Statistical Digression: Linear Models

Ordinary Least Squares (OLS) models (e.g., ANOVA, regression) are of the form: $\mathbf{Y} = \mathbf{X}\widehat{\mathbf{B}} + \varepsilon$

Matrix of
dependent
values Model matrix of
independent
variables Model
coefficients Model
coefficients Matrix of unexplained
values (the error)
$$Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & X_1 \\ 1 & \vdots \\ 1 & X_n \end{bmatrix} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Parameters found as:

$$\hat{\mathbf{B}} = \left(\mathbf{X}^{\mathsf{t}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{Y}$$

Y = XB $X^{T}Y = X^{T}XB$ $(X^{T}X)^{-1}X^{T}Y = (X^{T}X)^{-1}X^{T}XB$ $(X^{T}X)^{-1}X^{T}Y = IB$

Why?

Statistical Digression: Linear Models

OLS models assume error is iid

(independent, identically distributed error)

-More formally, error drawn from: $\mathcal{N}(0, \mathbf{V}_{iid})$

$$\mathbf{V}_{iid} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

 V_{iid} is an $N \times N$ identity matrix.

-It describes the fact that each specimen has identical expected variance (the 1s on diagonal), and is independent of other specimens (Os on off-diagonal)

Linear model solved as: $\beta = (X^tX)^{-1}X^tY$

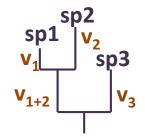
But since V_{iid} does nothing to matrix computations, this is the same as: $\beta = (X^t V_{iid}^{-1} X)^{-1} X^t V_{iid}^{-1} Y$

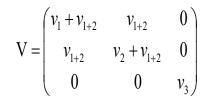
From OLS to GLS

With species-level data, OLS with V_{iid} is wrong model -Assumes independence when the data are not

-Non-independence (species correlations) described by phylogeny

-Assuming Brownian motion, we obtain:





-Using V yields: $\beta = (X^t V^{-1} X)^{-1} X^t V^{-1} Y$

-This is a weighted model via generalized least squares (GLS)

Why OLS is Incorrect Here

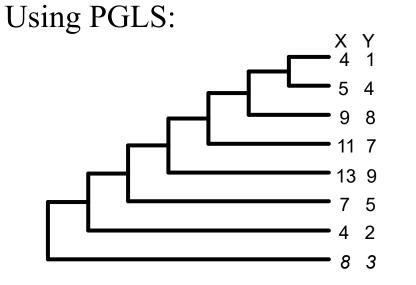
 $\mathbf{V} = \begin{pmatrix} v_1 + v_{1+2} & v_{1+2} & \mathbf{0} \\ v_{1+2} & v_2 + v_{1+2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & v_3 \end{pmatrix}$

OLS comparative model: $\boldsymbol{\beta} = (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbf{Y}$ OLS is an unweighted model: $\boldsymbol{\beta} = (\mathbf{X}^{t}\mathbf{V}_{iid}^{-1}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbf{V}_{iid}^{-1}\mathbf{Y} \qquad V_{id} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ PGLS is a weighted model: $\boldsymbol{\beta} = (\mathbf{X}^{t}\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbf{V}^{-1}\mathbf{Y}$

In PGLS, the weights are the phylogenetic distances, which describe the phylogenetic non-independence

Attention! Not taking phylogeny into
account, corresponds to assuming a
star phylogenyVI
$$sp1 sp2 sp3$$
 $V_{id} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ II

Testing Associations: PGLS



$$t1 t2 t3 t4 t5 t6 t7 t8$$

$$t1 7 0 0 0 0 0 0 0 0$$

$$t2 0 7 1 1 1 1 1 1$$

$$t3 0 1 7 2 2 2 2 2$$

$$t4 0 1 2 7 3 3 3 3$$

$$t5 0 1 2 3 7 4 4 4$$

$$t6 0 1 2 3 4 7 5 5$$

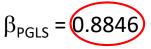
$$t7 0 1 2 3 4 5 7 6$$

$$t8 0 1 2 3 4 5 7 7$$

Recall from PICs: > anova(lm(pic.y~pic.x + 0)) Df Sum Sq Mean Sq F value Pr(>F) \geq 1 14.3519 14.3519 19.285 0.00461 ** > pic.x Residuals 6 4.4651 0.7442 --- $\beta_{PIC} = 0.8846$

numDF F-value p-value (Intercept) 1 12.87792 0.0115 19.28544 0.0046 1

 $\boldsymbol{\beta} = (\boldsymbol{X}^t \boldsymbol{V}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^t \boldsymbol{V}^{-1} \boldsymbol{Y}$

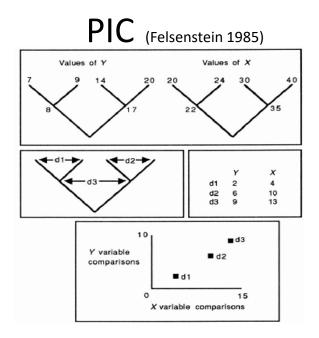


Х

PIC & PGLS yield identical results!

PIC vs. PGLS

PIC and PGLS seem VERY different computationally



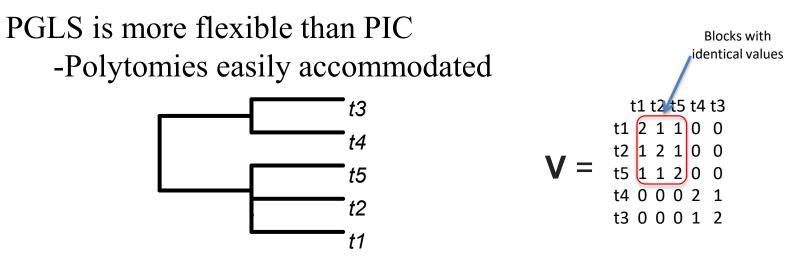
PGLS (Grafen 1989; Martins and Hansen 1997) $\mathbf{Y} = \mathbf{X}\mathbf{\beta} + \mathbf{\varepsilon}$ Error: $\mathcal{N}(0, \mathbf{V})$ $V = \begin{pmatrix} v_1 + v_{1+2} & v_{1+2} & 0 \\ v_{1+2} & v_2 + v_{1+2} & 0 \\ 0 & 0 & v_3 \end{pmatrix}$ $v_1 \stackrel{1}{\underbrace{v_1 + v_2}}_{v_1 + 2} \stackrel{3}{\underbrace{v_1 + v_2}}_{v_1 + 2} \stackrel{3}{\underbrace{v_2 + v_2}}_{v_1 + 2}$ $\boldsymbol{\beta} = (\mathbf{X}^{\mathsf{t}}\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{V}^{-1}\mathbf{Y}$

Both condition the data on the phylogeny (one via contrasts and one during the regression)

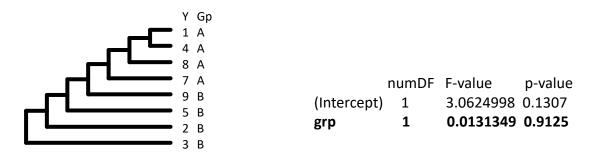
If implemented correctly, both yield identical β and model p-values <u>-PIC a special case of PGLS</u>

Garland and Ives (2000) Rohlf (2001) Blomberg (2012) Adams and Collyer (2018a)

PGLS: Greater Flexibility



-Regression, ANOVA, and factorial models possible $(\mathbf{Y} \sim \mathbf{X}_1 + \mathbf{X}_2)$



-Other evolutionary covariance models (e.g., OU) may be implemented by changing expected covariance in V (later in semester)

PGLS is preferred implementation over PIC

Statistically OLS and GLS are the same algebra:

 $\mathbf{Y} = \mathbf{X}\widehat{\boldsymbol{\beta}} + \boldsymbol{\varepsilon}$

$$\beta_{OLS} = (\mathbf{X}^{\mathsf{t}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{Y} = \mathbf{X}^{\mathsf{t}}\mathbf{V}_{iid}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{V}_{iid}^{-1}\mathbf{Y}$$
$$\beta_{GLS} = (\mathbf{X}^{\mathsf{t}}\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{V}^{-1}\mathbf{Y}$$

The difference is in the error covariance structure:

$$\mathbf{V}_{id} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{V} = \begin{pmatrix} v_1 + v_{1+2} & v_{1+2} & 0 \\ v_{1+2} & v_2 + v_{1+2} & 0 \\ 0 & 0 & v_3 \end{pmatrix}$$

In statistics, there is a standard GLS \rightarrow OLS transformation procedure based on error covariance transformation

-Phylogenetic transformation uses this approach

GLS→OLS in statistics: Judge et al. (1985) Johnson and DiNardo (1997) Rencher (2000)

-Condition data on phylogeny prior to statistical evaluation

1: Obtain phylogenetic transformation matrix, P:a) Eigen-decomposition of V:

$$\mathbf{V} = \mathbf{U}\mathbf{W}\mathbf{U}^{-1}$$

-This represents the characteristic information found in V, expressed in different way (generates a set of 'basis' vectors which express variation in V orthogonally)

b) Generate **P** as:

$$\mathbf{P} = (\mathbf{U}\mathbf{W}^{1/2}\mathbf{U}^{\mathrm{T}})^{-1}$$

\mathbf{P} is an $N \ge N$ matrix

-This expresses the information in V using orthogonal axes, U

Garland and Ives (2000) Adams (2014) Adams and Collyer (2018a)

-Condition data on phylogeny prior to statistical evaluation

2: Project data (X & Y) on P:

$$\widetilde{\mathbf{X}} = \mathbf{P}\mathbf{X} \quad \text{and} \quad \widetilde{\mathbf{Y}} = \mathbf{P}\mathbf{Y}$$
$$X_{R} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \qquad X_{F} = \begin{bmatrix} 1 & X_{1} \\ 1 & \vdots \\ 1 & X_{n} \end{bmatrix} \qquad \qquad Y = \begin{bmatrix} Y_{1} \\ \vdots \\ Y_{n} \end{bmatrix}$$

This conditions X & Y on phylogeny, rendering the values independent of evolutionary history

*NOTE: Need to do for both X_F and X_R to compare models

Garland and Ives (2000) Adams (2014) Adams and Collyer (2018a)

-Condition data on phylogeny prior to statistical evaluation

3: Find β using OLS

$$\widehat{\boldsymbol{\beta}} = \left(\widetilde{\mathbf{X}}^t \ \widetilde{\mathbf{X}} \right)^{-1} \widetilde{\mathbf{X}}^t \ \widetilde{\mathbf{Y}}$$

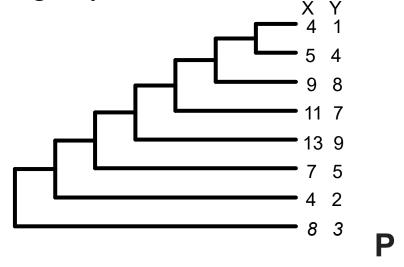
- ϵ of model now $\mathcal{N}(0,I)$

4: Significance evaluated using parametric methods (LRT and/or F-ratios), or permutation

Garland and Ives (2000) Adams (2014) Adams and Collyer (2018a)

Testing Associations: Phylo-Transform

Using Phylo-Transform:



		t1	t2	2 t3	8 t4	4 t	5 t	:6 1	t7 '	t8
		t1	7	0	0	0	0	0	0	0
V	_	t2	0	7	1	1	1	1	1	1
		t3	0	1	7	2	2	2	2	2
V		t4	0	1	2	7	3	3	3	3
		t5	0	1	2	3	7	4	4	4
		t6	0	1	2	3	4	7	5	5
		t7	0	1	2	3	4	5	7	6
		t8	0	1	2	3	4	5	6	7

t1 t2 t3 t8 t4 t5 t6 t7 t1 0.378 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 t2 0.000 0.3845 -0.0184 -0.0143 -0.0111 -0.0087 -0.0071 -0.0071 t3 0.000 -0.0184 0.4027 -0.0343 -0.0265 -0.0207 -0.0168 -0.0168 t4 0.000 -0.0143 -0.0343 0.4332 -0.0511 -0.0394 -0.0316 -0.0316 t5 0.000 -0.0111 -0.0265 -0.0511 0.4801 -0.0739 -0.0581 -0.0581 t6 0.000 -0.0087 -0.0207 -0.0394 -0.0739 0.5552 -0.1164 -0.1164 t7 0.000 -0.0071 -0.0168 -0.0316 -0.0581 -0.1164 0.6982 -0.3018 t8 0.000 -0.0071 -0.0168 -0.0316 -0.0581 -0.1164 -0.3018 0.6982

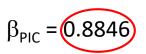
 $\boldsymbol{\beta} = \left(\widetilde{\mathbf{X}}^t \ \widetilde{\mathbf{X}} \right)^{-1} \widetilde{\mathbf{X}}^t \ \widetilde{\mathbf{Y}}$

 $\beta_{\text{PTrans}} = (0.884)$

Recall from PIC & PGLS:

> anova(lm(pic.y~pic.x + 0))
> Df Sum Sq Mean Sq F value Pr(>F)
> pic.x 1 14.3519 14.3519 19.285 0.00461 **
Residuals 0 4.4651 0.7442 ---

Same as PIC & PGLS!



PIC, PGLS, Phylo-Transformation

PIC, PGLS, Phylo-transform

- -3 implementations of phylogenetic comparative methods
- -All condition data on phylogeny
- -All yield identical regression coefficients & parameters

Which to use*?

- -PIC restricted primarily to regression
- -PGLS & Phylo-Transform more general: ANOVA, regression, etc.
- -PGLS: BM & non-BM models (e.g., OU, EB)
- -Phylo-Transform: can better accommodate multivariate \mathbf{Y}

*Note: phylogenetic mixed model was also proposed (Lynch 1991)

PIC, PGLS, and phylo-transform yield identical parameters and coefficients

$$\widehat{\mathbf{B}} = \left(\mathbf{X}^{\mathsf{t}}\mathbf{V}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{V}^{-1}\mathbf{Y}$$
$$= \left(\mathbf{X}_{pic}^{t}\mathbf{X}_{pic}\right)^{-1}\mathbf{X}_{pic}^{t}\mathbf{Y}_{pic}$$
$$= \left(\widetilde{\mathbf{X}}^{T}\widetilde{\mathbf{X}}\right)^{-1}\widetilde{\mathbf{X}}^{T}\widetilde{\mathbf{Y}}$$

How do we evaluate them statistically?

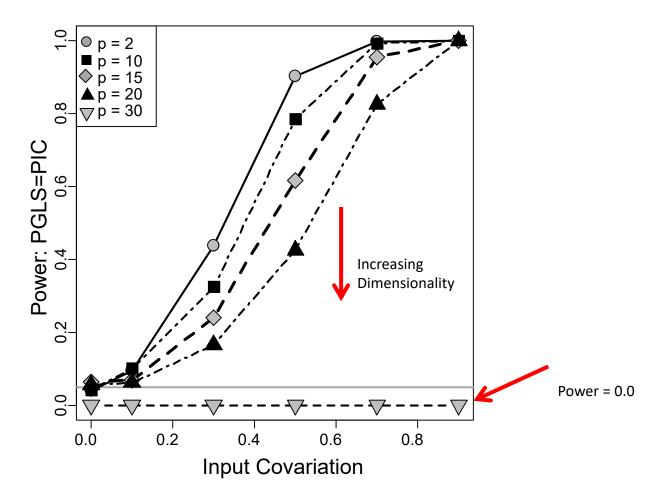
-Standard approach: parametric methods A) F-ratios: MS_F / MS_R (LS solutions: equivalent to LRT comparing models)

B) Optimize $log \mathcal{L}$ for model (popular)

$$\log \mathcal{L} = \log \left[\frac{\exp(-\frac{1}{2} (\mathbf{Y} - E(\mathbf{Y}))^{t} (\mathbf{V})^{-1} (\mathbf{Y} - E(\mathbf{Y})))}{\sqrt{(2\pi)^{N} \times |\mathbf{V}|}} \right]$$

PROBLEM: Parametric PCMs suffer from Rao's paradox

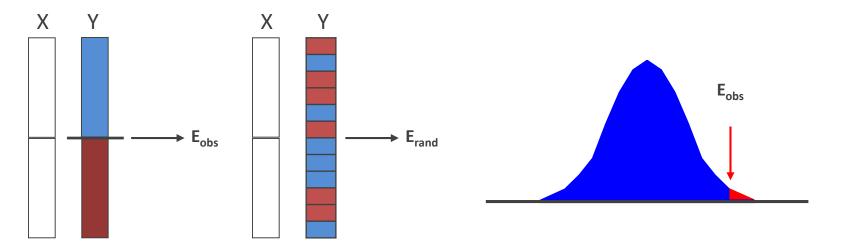
-Reduced power with higher data dimensionality



Adams (2014) Adams and Collyer (2018a)

Alternative: Permutation methods

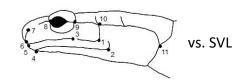
Permute data in some way to generate distribution of possible outcomes under H_0

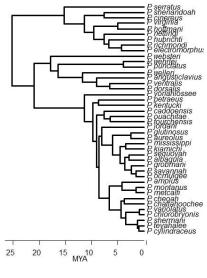


For PCMs, what does one permute?

Must identify correct exchangeable units under H₀

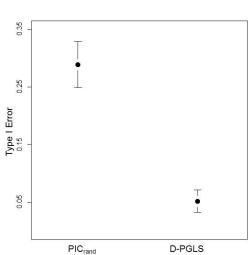
Permuting Y_{PIC} (e.g., Klingenberg & Marugán-Lobón [2013]) is incorrect Results in elevated type I error rates





D-PGLS	df	SS	MS	F	\mathbb{R}^2	P _{Yrand}	
SVL	1	0.0006586	0.0006586	3.0288	0.07039	0.221 NS	-
Residual	40	0.0086976	0.0086976				
Total	41	0.0093562	0.00021744	-			
<u>PIC</u>	df	SS	MS	F	R^2	P _{PICrand}	$\mathbf{P}_{\mathbf{Yrand}}$
SVL	1	0.0006586	0.0006586	3.0288	0.07039	0.026	0.221 NS
Residual	40	0.0086976	0.0086976				

Total 41 0.0093562 0.00021744



Method should not be used

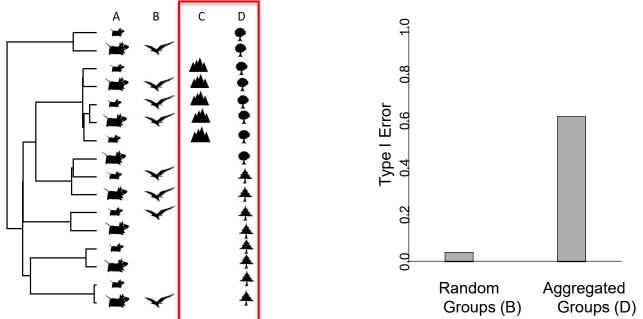
Adams and Collyer (2015) Adams and Collyer. (2018a)

One could shuffle Y, then perform phylo-transform

-Appropriate type I error and power for regression -Slightly elevated type I error in some circumstances Adams (2014) Adams and Collyer (2015)

Goolsby (2016) Adams and Collyer (2018)

-VERY HIGH type I error for ANOVA of aggregated groups



Method not a general solution for all statistical designs

Adams (2014) Adams and Collyer (2015) Adams and Collyer. (2018a) Adams and Collyer (2018b)

Phylo-transform first: RRPP*

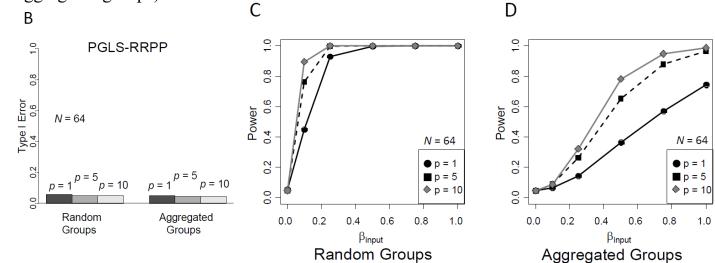
-Transform data: $\widetilde{\mathbf{X}} = \mathbf{P}\mathbf{X}$ and $\widetilde{\mathbf{Y}} = \mathbf{P}\mathbf{Y}$

-Run model:
$$\boldsymbol{\beta} = \left(\widetilde{\mathbf{X}}^t \ \widetilde{\mathbf{X}}\right)^{-1} \widetilde{\mathbf{X}}^t \ \widetilde{\mathbf{Y}}$$

-Shuffle residuals ($\tilde{\epsilon}$) from reduced model; assess significance

-Appropriate type I error, power, bias, etc. (though note, correctly, that power

decreases with aggregated groups)



Provides general solution for all phylogenetic linear models -RULE: Transform data first, shuffle residuals second!

Testing Associations: Conclusions

PCMs condition data on phylogeny

3 implementations: PIC, PGLS, Phylo-transform -All yield identical regression coefficients & parameters

Comparisons

-PIC restricted primarily to regression

-PGLS & Phylo-Transform more general: ANOVA, regression, etc. -PGLS: BM & non-BM models (e.g., OU, EB)

-Parametric significance testing problematic with Y_{mult} -Phylo-Transform + RRPP most flexible for Y_{mult}

> Garland and Ives (2000) Rohlf (2001) Blomberg (2012) Adams and Collyer (2018)