
Phylogenetic 
Comparative Methods: II



Comparative Evolutionary Biology
Last time:
-Taxa are not independent
-Ignore evolutionary history AT ONE’S PERIL!

Phylogenetic comparative methods condition the data on the 
phylogeny to account for lack of independence during the analysis
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Issues arises with both discrete and continuous traits

Continuous Data: The Problem

r = 0.915; P > 0.0001

Say we have this correlation,

Here is the same pattern with the phylogeny 
superimposed

Clearly, closely related taxa are similar.

How can we account for this? 



Phylogenetically Independent Contrasts (PIC)
Construct contrast scores at tree nodes, which are evolutionarily independent of one another

-Based on a Brownian motion null model of trait evolution

-Find contrasts via recursive pruning algorithm

Continuous Data: Independent Contrasts

Felsenstein (1985)
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CHALLENGE: See if you can 
calculate the same PICs 
using the Y data and branch 
lengths! 



How do we test trait correlations with PIC?

Testing Associations: Independent Contrasts

Felsenstein (1985)
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1: Calculate Xpic & Ypic
pic.x pic.y

0.1805090  -0.6229475
-1.6805047 -1.4447758
-1.0520183 -0.6755435
1.9455001  1.3404970
2.0742519  0.9723056
2.4053512  2.9398737
0.7071068  2.1213203

2: Test association via correlation and regression 
(note: regression through origin as sign of contrasts arbitrary)

Xpic

Y p
icrPIC = 0.848

 anova(lm(pic.y~pic.x + 0)) 
 Df Sum Sq Mean Sq F value Pr(>F) 

 pic.x 1 14.3519 14.3519 19.285 0.00461 ** 
Residuals 6 4.4651 0.7442 ---

βPIC = 0.8846
Note: 7 PICs



PIC works great for regression/correlation
What about ANOVA (Y~gp)?  

PIC Challenges: ANOVA Models
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Could use binary coding 
to ‘trick’ PIC algorithm

GPPIC
-0.09767595
-0.14980902
-0.23925500
-0.40333538
0.00000000
0.00000000
0.00000000

Now YPIC~ GPPIC is anova

But what about 3 or more groups? 
Solutions possible, but far from obvious*

*NOTE: Algebraic solution is to use k-1 binary columns for k groups. PICs are obtained for each, and the set of GPPIC columns treated as the independent variables. 
This will work, but algebra must be done by hand, as canned functions will not generate proper null model for test (DCA has never seen this done)



For Phy-ANOVA, a simulation approach can be used
1: Perform NON-PHYLOGENETIC ANOVA
2: Simulate many Y datasets on phylogeny under BM
3: Evaluate simulated datasets
4: Compare observed ANOVA output to distribution
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Testing Associations: “Phylogenetic” ANOVA

Garland et al. (1993)



How does one simulate data? 

Digression: BM Simulation

Point-estimates: 
random draws from a distribution
 rnorm(1) 
-0.9698378

> hist(rnorm(1000))

rnorm(1000)
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BM over time: 
Cumulative sum of random draws 
for many time steps
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t <- 0:100 # time
sig2 <- 0.01 ## first, simulate a set of random deviates
x <- rnorm(n = length(t) - 1, sd = sqrt(sig2))
## now compute their cumulative sum
x <- c(0, cumsum(x)) plot(t, x, type = "l", ylim = c(-2, 2))

example from L. Revell
http://www.phytools.org/eqg/Exercise_4.1/



How does one simulate data? 

Digression: BM Simulation

Many BM runs over time: BM on phylogeny: 
Same idea, but keep track of 
branches

examples from L. Revell
http://www.phytools.org/eqg/Exercise_4.1/
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nsim <- 100 
X <- matrix(rnorm(n = nsim * (length(t) - 1), sd = sqrt(sig2)), nsim, 
length(t) - 1) 
X <- cbind(rep(0, nsim), t(apply(X, 1, cumsum))) 
plot(t, X[1, ], xlab = "time", ylab = "phenotype", ylim = c(-2, 2), type = 
"l") apply(X[2:nsim, ], 1, function(x, t) lines(t, x), t = t)
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<<Code skipped here>>

Many R functions do this: sim.char, 
fast.BM, etc. 

Final values
at tips

DCA Programming note: one can also 
simulate MVN data and post-multiply 
(project) by the phylogenetic covariance 
matrix



PROBLEM: Typical approach does NOT condition data on phylogeny: 
It is OLS-based ANOVA with BM simulations (wrong model, evolutionary 

relationships ignored!)

Need a better approach (PGLS: next)

“Phylogenetic” ANOVA”: Problem

F-distributions P-values from simulation

Adams and Collyer (2022)

Simulation-based with OLS

Permutation-based (RRPP)



Phylogenetic Generalized Least Squares
Follows the GLS model 

(a ‘correlated observations method)

-error (ε) is not iid, but contains expected covariation as described by 
phylogeny (V)

V = phylogenetic covariance matrix*
-Describes amount of evolutionary time species share via common ancestors (and 

thus how similar their trait values are expected to be)

*Matrix is also called C

Testing Associations: PGLS

Grafen (1989)
For review see Adams and Collyer (2018a)

𝐘𝐘 = 𝐗𝐗�𝛃𝛃 + 𝜀𝜀
Data The Design Error: 𝒩𝒩(0,𝐕𝐕)
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Solving PGLS: must find �𝛃𝛃

Parameters obtained using standard GLS approach:

-PGLS is a ‘weighted’ GLS, where weights are inverse of structured 
error

But how did we get this equation?

Testing Associations: PGLS

Grafen (1989)

𝐘𝐘 = 𝐗𝐗�𝛃𝛃 + 𝜀𝜀

𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐘𝐘
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Ordinary Least Squares (OLS) models (e.g., ANOVA, regression) are 
of the form:

Parameters found as: 

Statistical Digression: Linear Models

𝐘𝐘 = 𝐗𝐗�𝛃𝛃 + 𝜀𝜀

Matrix of 
dependent 

values
Model matrix of 

independent 
variables

Model 
coefficients

Matrix of unexplained 
values ( the error)

Why?

𝑌𝑌 =
𝑌𝑌1
⋮
𝑌𝑌𝑛𝑛

𝑋𝑋 =
1 𝑋𝑋1
1 ⋮
1 𝑋𝑋𝑛𝑛

𝜀𝜀 =
𝜀𝜀1
⋮
𝜀𝜀𝑛𝑛

𝛽𝛽 = 𝛽𝛽0
𝛽𝛽1



OLS models assume error is iid
(independent, identically distributed error)

-More formally, error drawn from: 𝒩𝒩(0,𝐕𝐕𝑖𝑖𝑖𝑖𝑖𝑖)

Statistical Digression: Linear Models

𝐕𝐕𝑖𝑖𝑖𝑖𝑖𝑖 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

Viid is an N x N identity matrix. 
-It describes the fact that each specimen has identical expected variance (the 1s on 

diagonal), and is independent of other specimens (0s on off-diagonal)

Linear model solved as: 𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐘𝐘

But since Viid does nothing to matrix computations,
this is the same as: 𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐕𝐕𝒊𝒊𝒊𝒊𝒊𝒊−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕𝒊𝒊𝒊𝒊𝒊𝒊−𝟏𝟏𝐘𝐘



With species-level data, OLS with Viid is wrong model 
-Assumes independence when the data are not

-Non-independence (species correlations) 
described by phylogeny

-Assuming Brownian motion, we obtain:

-Using V yields:  𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐘𝐘

-This is a weighted model via generalized least squares (GLS)

From OLS to GLS
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Why OLS is Incorrect Here
OLS comparative model:

OLS is an unweighted model: 

PGLS is a weighted model:

In PGLS, the weights are the phylogenetic distances, which describe the 
phylogenetic non-independence

𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐘𝐘

𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐕𝐕𝒊𝒊𝒊𝒊𝒊𝒊−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕𝒊𝒊𝒊𝒊𝒊𝒊−𝟏𝟏𝐘𝐘

𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐘𝐘
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Attention! Not taking phylogeny into 

account, corresponds to assuming a 

star phylogeny
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Using PGLS:

Testing Associations: PGLS

8   3
4   2
7   5
13  9
11  7
9   8
5   4 
4   1
X   Y t1 t2 t3 t4 t5 t6 t7 t8

t1 7  0  0  0  0  0  0  0
t2  0  7  1  1  1  1  1  1
t3  0  1  7  2  2  2  2  2
t4  0  1  2  7  3  3  3  3
t5  0  1  2  3  7  4  4  4
t6  0  1  2  3  4  7  5  5
t7  0  1  2  3  4  5  7  6
t8  0  1  2  3  4  5  6  7

V =

𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐘𝐘

numDF F-value      p-value
(Intercept)     1        12.87792  0.0115
X                      1        19.28544  0.0046

 anova(lm(pic.y~pic.x + 0)) 
 Df Sum Sq Mean Sq F value Pr(>F) 

 pic.x 1 14.3519 14.3519 19.285 0.00461 ** 
Residuals 6 4.4651 0.7442 ---

βPIC = 0.8846βPGLS = 0.8846

Recall from PICs:

PIC & PGLS yield identical results!



PIC and PGLS seem VERY different computationally

Both condition the data on the phylogeny (one via contrasts and one during the regression)

If implemented correctly, both yield identical 𝛃𝛃 and model p-values
-PIC a special case of PGLS

PIC vs. PGLS

Garland and Ives (2000)
Rohlf (2001)

Blomberg (2012)
Adams and Collyer (2018a)

𝛃𝛃 = (𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐘𝐘

PIC (Felsenstein 1985) PGLS (Grafen 1989; Martins and Hansen 1997)

Y = Xβ + ε
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Error: 𝒩𝒩(0,𝐕𝐕)
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PGLS is more flexible than PIC
-Polytomies easily accommodated

-Regression, ANOVA, and factorial models possible (Y ~ X1 + X2)

-Other evolutionary covariance models (e.g., OU) may be 
implemented by changing expected covariance in V (later in semester)

PGLS is preferred implementation over PIC

PGLS: Greater Flexibility

t1
t2
t5
t4
t3 t1 t2 t5 t4 t3

t1  2  1  1  0   0
t2  1  2  1  0   0
t5  1  1  2  0   0
t4  0  0  0  2   1
t3  0  0  0  1   2

V =

Blocks with 
identical values

numDF F-value         p-value
(Intercept)     1          3.0624998  0.1307
grp                  1          0.0131349  0.9125

Y
1
4
8
7
9
5
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Gp
A
A
A
A
B
B
B
B



Statistically OLS and GLS are the same algebra: 

The  difference is in the error covariance structure:

In statistics, there is a standard GLSOLS transformation procedure 
based on error covariance transformation

-Phylogenetic transformation uses this approach

Phylogenetic Transformation
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𝐘𝐘 = 𝐗𝐗�𝛃𝛃 + 𝜀𝜀

𝛃𝛃𝑮𝑮𝑳𝑳𝑳𝑳 = (𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐘𝐘

𝛃𝛃𝑶𝑶𝑳𝑳𝑳𝑳 = (𝐗𝐗𝐭𝐭𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐘𝐘 = 𝐗𝐗𝐭𝐭𝐕𝐕𝒊𝒊𝒊𝒊𝒊𝒊−𝟏𝟏𝐗𝐗)−𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕𝒊𝒊𝒊𝒊𝒊𝒊−𝟏𝟏𝐘𝐘

GLSOLS in statistics:
Judge et al. (1985)

Johnson and DiNardo (1997)
Rencher (2000)
















+

+
= ++

++

3

21221

21211

00
0
0

V
v

vvv
vvv



-Condition data on phylogeny prior to statistical evaluation

1: Obtain phylogenetic transformation matrix, P: 
a) Eigen-decomposition of V:

𝐕𝐕 = 𝐔𝐔𝐔𝐔𝐔𝐔−1

-This represents the characteristic information found in V, expressed in different way
(generates a set of ‘basis’ vectors which express variation in V orthogonally)

b) Generate P as:
𝐏𝐏 = (𝐔𝐔𝐔𝐔𝟏𝟏/𝟐𝟐𝐔𝐔𝐓𝐓)−1

P is an N x N matrix

-This expresses the information in V using orthogonal axes, U

Phylogenetic Transformation

Garland and Ives (2000)
Adams (2014)

Adams and Collyer (2018a)



-Condition data on phylogeny prior to statistical evaluation

2: Project data (X & Y) on P:

�𝐗𝐗 = 𝐏𝐏𝐗𝐗 and   �𝐘𝐘 = 𝐏𝐏𝐘𝐘

This conditions X & Y on phylogeny, rendering the values independent 
of evolutionary history

*NOTE: Need to do for both  XF and XR to compare models

Phylogenetic Transformation

𝑌𝑌 =
𝑌𝑌1
⋮
𝑌𝑌𝑛𝑛

𝑋𝑋𝐹𝐹 =
1 𝑋𝑋1
1 ⋮
1 𝑋𝑋𝑛𝑛

𝑋𝑋𝑅𝑅 =
1
1
1

Garland and Ives (2000)
Adams (2014)

Adams and Collyer (2018a)



-Condition data on phylogeny prior to statistical evaluation

3: Find β using OLS
�𝛃𝛃 = �𝐗𝐗𝒕𝒕 �𝐗𝐗 −1�𝐗𝐗𝒕𝒕 �𝐘𝐘

-ε of model now 𝒩𝒩(0, 𝐈𝐈)

4: Significance evaluated using parametric methods (LRT and/or F-
ratios), or permutation

Phylogenetic Transformation

Garland and Ives (2000)
Adams (2014)

Adams and Collyer (2018a)



Using Phylo-Transform:

Testing Associations: Phylo-Transform

8   3
4   2
7   5
13  9
11  7
9   8
5   4 
4   1
X   Y

t1 t2 t3 t4 t5 t6 t7 t8
t1 7  0  0  0  0  0  0  0
t2  0  7  1  1  1  1  1  1
t3  0  1  7  2  2  2  2  2
t4  0  1  2  7  3  3  3  3
t5  0  1  2  3  7  4  4  4
t6  0  1  2  3  4  7  5  5
t7  0  1  2  3  4  5  7  6
t8  0  1  2  3  4  5  6  7

V =

𝛃𝛃 = �𝐗𝐗𝒕𝒕 �𝐗𝐗 −1�𝐗𝐗𝒕𝒕 �𝐘𝐘

 anova(lm(pic.y~pic.x + 0)) 
 Df Sum Sq Mean Sq F value Pr(>F) 

 pic.x 1 14.3519 14.3519 19.285 0.00461 ** 
Residuals 6 4.4651 0.7442 ---

βPIC = 0.8846βPTrans = 0.8846

Recall from PIC & PGLS:

Same as PIC & PGLS!

t1          t2           t3           t4           t5            t6            t7        t8
t1 0.378  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.00000
t2 0.000  0.3845 -0.0184 -0.0143 -0.0111 -0.0087 -0.0071 -0.0071
t3 0.000 -0.0184  0.4027 -0.0343 -0.0265 -0.0207 -0.0168 -0.0168
t4 0.000 -0.0143 -0.0343  0.4332 -0.0511 -0.0394 -0.0316 -0.0316
t5 0.000 -0.0111 -0.0265 -0.0511  0.4801 -0.0739 -0.0581 -0.0581
t6 0.000 -0.0087 -0.0207 -0.0394 -0.0739  0.5552 -0.1164 -0.1164
t7 0.000 -0.0071 -0.0168 -0.0316 -0.0581 -0.1164  0.6982 -0.3018
t8 0.000 -0.0071 -0.0168 -0.0316 -0.0581 -0.1164 -0.3018  0.6982

P =

Df SS        MS          Rsq F              Z       Pr(>F)   
X                1  14.3519 14.3519 0.76271 19.285 1.734  0.006 **
Residuals  6    4.4651  0.7442 0.23729 



PIC, PGLS, Phylo-transform
-3 implementations of phylogenetic comparative methods
-All condition data on phylogeny
-All yield identical regression coefficients & parameters

Which to use*? 
-PIC restricted primarily to regression
-PGLS & Phylo-Transform more general: ANOVA, regression, etc.
-PGLS: BM & non-BM models (e.g., OU, EB)
-Phylo-Transform: can better accommodate multivariate Y

PIC, PGLS, Phylo-Transformation

Garland and Ives (2000)
Rohlf (2001)

Blomberg (2012)
Adams and Collyer (2018a)*Note: phylogenetic mixed model was also proposed (Lynch 1991)



PIC, PGLS, and phylo-transform yield identical parameters and 
coefficients

�𝐁𝐁 = 𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐗𝐗 −𝟏𝟏𝐗𝐗𝐭𝐭𝐕𝐕−𝟏𝟏𝐘𝐘

= 𝐗𝐗𝒑𝒑𝒊𝒊𝒑𝒑𝒕𝒕 𝐗𝐗𝒑𝒑𝒊𝒊𝒑𝒑
−1
𝐗𝐗𝒑𝒑𝒊𝒊𝒑𝒑𝒕𝒕 𝐘𝐘𝒑𝒑𝒊𝒊𝒑𝒑

= �𝐗𝐗𝑻𝑻�𝐗𝐗 −1�𝐗𝐗𝑻𝑻 �𝐘𝐘

How do we evaluate them statistically?
-Standard approach: parametric methods
A) F-ratios: MSF / MSR (LS solutions: equivalent to LRT comparing models)

B) Optimize logℒ for model (popular)

PCM: Assessing Significance

logℒ=log
exp(−12(𝐘𝐘−𝐸𝐸(𝐘𝐘))𝑡𝑡(𝐕𝐕)−1(𝐘𝐘−𝐸𝐸(𝐘𝐘)))

(2𝜋𝜋)𝑁𝑁× 𝐕𝐕

Adams and Collyer (2018a)



PROBLEM: Parametric PCMs suffer from Rao’s paradox 
-Reduced power with higher data dimensionality

PCM: Assessing Significance

Adams (2014)
Adams and Collyer (2018a)
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Alternative: Permutation methods

Permute data in some way to generate distribution of possible 
outcomes under H0

For PCMs, what does one permute?

Must identify correct exchangeable units under H0

PCM: Assessing Significance

Adams and Collyer (2018a)
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Permuting YPIC (e.g., Klingenberg & Marugán-Lobón [2013]) is incorrect
Results in elevated type I error rates

Method should not be used

PCM: Assessing Significance

Adams and Collyer (2015)
Adams and Collyer. (2018a)

vs. SVL



One could shuffle Y, then perform phylo-transform

-Appropriate type I error and power for regression
-Slightly elevated type I error in some circumstances

-VERY HIGH type I error for ANOVA of aggregated groups

Method not a general solution for all statistical designs

PCM: Assessing Significance

Adams (2014)
Adams and Collyer (2015)

Adams and Collyer. (2018a)
Adams and Collyer (2018b)

Adams (2014)
Adams and Collyer (2015)

Goolsby (2016)
Adams and Collyer (2018)
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Phylo-transform first: RRPP*
-Transform data: �𝐗𝐗 = 𝐏𝐏𝐗𝐗 and   �𝐘𝐘 = 𝐏𝐏𝐘𝐘
-Run model:  𝛃𝛃 = �𝐗𝐗𝒕𝒕 �𝐗𝐗 −1�𝐗𝐗𝒕𝒕 �𝐘𝐘
-Shuffle residuals (�𝛆𝛆) from reduced model; assess significance
-Appropriate type I error, power, bias, etc. (though note, correctly, that power 

decreases with aggregated groups)

Provides general solution for all phylogenetic linear models
-RULE: Transform data first, shuffle residuals second!

PCM: Assessing Significance

Adams and Collyer (2019)
*RRPP: Residual Randomization Permutation 
Procedure: We’ll discuss later in semester



PCMs condition data on phylogeny

3 implementations: PIC, PGLS, Phylo-transform
-All yield identical regression coefficients & parameters

Comparisons
-PIC restricted primarily to regression

-PGLS & Phylo-Transform more general: ANOVA, regression, etc.
-PGLS: BM & non-BM models (e.g., OU, EB)

-Parametric significance testing problematic with Ymult
-Phylo-Transform + RRPP most flexible for Ymult

Testing Associations: Conclusions

Garland and Ives (2000)
Rohlf (2001)

Blomberg (2012)
Adams and Collyer (2018)
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