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Ancestral State Estimation
Many macroevolutionary questions require inferences on past states:

What was the structure of the earliest flower? 

Did early turtles have genotypic or temperature-
dependent sex determination? 

What was the ‘direction’ of trait change through 
time? 

Addressing such questions requires estimating 
ancestral character states*
*Note: this is NOT ancestral state reconstruction. We are estimating past states, not reconstructing with certainty

Sebath et al. Ecol. & Evol. (2016)

Sauquet et al. Nature Comm. (20017)



Ancestral State Estimation
The Goal

-Utilize phylogeny and extant data to infer past states

-Incorporating fossil information (when available) is important!

From Joy et al. PLoS ONE. (2016)
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Ancestral State Estimation
Outline

-Discrete Data Methods
-Parsimony
-Maximum Likelihood
-Bayesian Approaches (stochastic character mapping)

-Continuous Data Methods
-Maximum Likelihood
-Squared Change Parsimony
-Bayesian Approaches

-Incorporating Fossil Information



Discrete Data: Maximum Parsimony
-Maximum Parsimony

-Estimate ancestral states that minimize trait change on phylogeny

-We want the simplest model possible to explain the data

-Nodal values representing the fewest trait changes to ‘map extant trait 
values on the phylogeny embody this

-Thus, estimating ancestral states such that trait changes are minimized 
is a ‘parsimonious’ solution



Discrete Data: Maximum Parsimony
-Best embodied by simple example: 

-Possible states: Black/ White

Ancestral Estimates?
for all nodes 

But what about now?

Need an algorithm



Discrete Data: Maximum Parsimony
-Parsimony algorithm

- ‘Double pass’: traverse tipsroot, then root tips
- Requires rules to assign and evaluate nodal values

Wagner Parsimony (assumes equally weighted unordered characters)

1: If descendant nodes share states, assign state to ancestor
2: If descendants do not share states, assign ancestor the union of states

Will result in both unambiguous and equivocal ancestor state estimates 



Discrete Data: Maximum Parsimony
-Example Wagner Parsimony

Cunningham et al. TREE (1998)



Discrete Data: Maximum Parsimony
-Example: Habitat use in Anolis lizards

Data from Mahler et al. Evol. (2010)
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Discrete Data: Maximum Parsimony
-Conclusions

-Advantages
-Quick, intuitive, and straight-forward

-Disadvantages
-‘Cost’ equal for all states (i.e., equal weighting of state changes)
-Assumes equal transitions among states (qAB = qBA)
-Branch length information ignored!!!

Upshot: Parsimony does not optimize (or even have!) an evolutionary 
model of trait change: it is a simple rule-set



Discrete Data: Parsimony to Likelihood
-Extensions

-Other parsimony algorithms have been proposed
-e.g., unequal state change weighting (e.g, AB 3X cost of BA)

Better, but still ad-hoc  
What weights should be used? 
How to select them?

Branch lengths still ignored

NOTE: Such adjustments try to get at a formal model of trait evolution, 
so why not just use such a model?  

That leads us to likelihood



Discrete Data: Maximum Likelihood

-Estimate ancestral states by maximizing the probability of the data 
given the phylogeny, a model of evolution, and anc. states: 

Pr(X | τ, θ,A)

𝓛𝓛 θ,A =Pr(X | τ, θ,A)

Need the data (X), the phylogeny (τ), and a model (θ)

Simultaneously estimate model parameters and ancestral states via ML



Discrete Data: Maximum Likelihood
-A Markov process used as model for character state changes

-Recall transition rates for binary traits (Pagel 1994)*

θ = 𝐐𝐐(𝒕𝒕) = 1 − 𝑞𝑞01 𝑑𝑑𝑑𝑑 𝑞𝑞01𝑑𝑑𝑑𝑑
𝑞𝑞10𝑑𝑑𝑑𝑑 1 − 𝑞𝑞10 𝑑𝑑𝑑𝑑

Thus, for the tips data (X): 𝓛𝓛 θ =Pr(X | τ, θ)

-Now use Q to estimate ancestor states A1 – AN-1)

-Yields the likelihood of the data conditioned on the phylogeny, the 
model, and the ancestral states:

𝓛𝓛 θ,𝐴𝐴 =Pr(X | τ, θ,A)

Use search algorithm to maximize 𝓛𝓛 θ,A (see Schluter et al. 1997; Pagel 1999)

*Method works for multi-state discrete, and also continuous characters (see below)



Discrete Data: Maximum Likelihood
-Example: Habitat use in Anolis lizards

Data from Mahler et al. Evol. (2010)

Not all are the same as with MP



Discrete Data: Bayesian

-Calculate probabilities of ancestral states (A) given the data (D), 
phylogeny (τ), and model (θ)

Pr(A|X, τ, θ)= Pr(X |  θ,A)Pr(A| θ)
Pr(X |  θ)

Obtain posterior distributions for A & θ via MCMC

Both Empirical and Hierarchical Bayesian implementations exist

Huelsenbeck and Bollback. Syst.Biol. (2001)



Discrete Data: Bayesian Stochastic Mapping

-Stochastic character mapping one approach

-Sample possible character histories from posterior under MCMC

-Summary across many runs provides ancestral estimates

Huelsenbeck et al. Syst.Biol. (2003)



Discrete Data: Bayesian Stochastic Mapping
-Example: Habitat use in Anolis lizards

Data from Mahler et al. Evol. (2010)

One run: Not overly useful



Discrete Data: Bayesian Stochastic Mapping
-Example: Habitat use in Anolis lizards

Data from Mahler et al. Evol. (2010)

From 100 runs. MUCH more useful



Continuous Data: Maximum Likelihood

-Recall that Brownian motion embodies the Markov process for 
continuous traits

Instead of rate matrix Q, we need a rate parameter σ2 which describes 
instantaneous changes in X

Can formulate the likelihood conditioned on the phylogeny, the model, 
and the ancestral states:

𝓛𝓛 θ,𝐴𝐴 =Pr(X | τ, θ,A)

Use search algorithm to maximize 𝓛𝓛 θ,A (see Schluter et al. 1997)

𝑑𝑑𝑋𝑋(𝑑𝑑) = 𝜎𝜎2(𝑑𝑑)



Continuous Data: Squared Change Parsimony

-Another approach: find ancestral values that minimize the sum-of-
squared trait changes along the branches of the phylogeny: squared 
change parsimony (SCP)

SS are weighted inversely by branch lengths

SS= ∑𝑖𝑖=1𝑁𝑁−1 (𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖′)
2

𝑣𝑣𝑖𝑖

Where 𝑥𝑥𝑖𝑖 & 𝑥𝑥𝑖𝑖𝑖 are trait values for nodes at opposite end of branch with 
branch length: vi 

Also, GLS model could be used (Martins and Hansen 1997)

ML, GLS, and SCP should yield equivalent estimates Maddison (1991)
McArdle & Rodrigo (1994)



Continuous Data: Maximum Likelihood
-Example: Body size in Anolis lizards

Data from Mahler et al. Evol. (2010)



Ancestral States: Incorporating Fossils
-Incorporating fossil information in any of the above improves 
estimates

Example: Here MP anc. states equivocal UNLESS fossil information 
included

From Joy et al. PLoS ONE. (2016)

NOTE: Assigning ‘hummingbird’ as root 
state (through e.g., FOSSIL KNOWLEDGE) 
allows final nodal assignment: (see Joy et 
al. 2016)



Ancestral States: Challenges
-If one’s actual data has a trend, ancestral states will be misleading

From Revell Phytools blog

Data Simulated with Trend Estimated Ancestral States



Ancestral States: Incorporating Fossils
-Fossil information may be incorporated in ML and Bayesian 
approaches to improve estimation

Simulated example (data simulated with trend): 

From Revell Phytools blog



Ancestral States: Incorporating Fossils
-Correlation of actual vs. estimated ancestors with and without fossil 
information (Bayesian estimation fixing 2 nodes)

From Revell Phytools blog

Estimation MUCH better with fossils!



Ancestral State Estimation
Conclusions

-ML and Bayesian methods for both discrete and continuous data

-Discrete Data Methods
-Maximum Likelihood
-Bayesian Approaches (stochastic character mapping)

-Continuous Data Methods
-Maximum Likelihood = Squared Change Parsimony = GLS
-Bayesian Approaches

-Incorporating fossil information can be critically important
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