Models of Continuous Trait Evolution

Mapping Traits to Phylogeny

Ancestral State Estimation

- -Map traits to phylogeny
- -Estimate trait values at ancestral nodes (and branches)

- -Accomplished using a *model* of evolutionary change
- -How do we define the 'fit' of the data under that model?

Continuous Data: Maximum Likelihood

-One approach uses maximum likelihood

-Using statistical theory, one can ask:

What is the probability of observing my data, given the phylogeny and some evolutionary model?

$$Pr(X \mid \tau, \theta)$$

Same as: "What is the likelihood of some evolutionary model as observed by *conditioning* the data on the phylogeny under that model?

$$\mathcal{L}(\theta) = \Pr(X \mid \tau, \theta)$$

Use search algorithm to maximize $\mathcal{L}(\theta)$

Continuous Data: Brownian Motion

Common null model of evolutionary change: Brownian motion

BM embodies the Markov process such that:

Trait changes are independent from time step to time step Outcome: no change in μ , but $\sigma_v^2 \uparrow \propto$ time

Side-note: this is the continuous-trait model equivalent of the Markov process we discussed earlier

Given this *model*, one can calculate the probability of observing the trait data on the phylogeny (or equivalently, the likelihood of the model given the data conditioned and the phylogeny)

Continuous Data: Brownian Motion

A null model of evolutionary change: Brownian motion

$$dY_i\left(t\right) = \sigma dB_i\left(t\right)$$
 Character change Evolutionary rate Small random perturbations

$$\sigma^{2} = \frac{\left(\mathbf{Y} - E(\mathbf{Y})\right)^{t} \mathbf{C}^{-1} \left(\mathbf{Y} - E(\mathbf{Y})\right)}{N}$$

Evolutionary rate of change (a phylogeny-standardized variance)

$$logL = \log \left[\frac{exp\left\{ -\frac{1}{2} \left[(Y - E(Y))^t \mathbf{V}^{-1} (Y - E(Y)) \right] \right\}}{\sqrt{2\pi^N \times \det(\mathbf{V})}} \right]$$

Note: this is the univariate logL

Brownian Motion: What's in a Likelihood?

-Components of the likelihood: 3 main parts

$$logL = \log \left[\frac{exp\left\{ -\frac{1}{2} \left[(Y - E(Y))^t \mathbf{V}^{-1} (Y - E(Y)) \right] \right\}}{\sqrt{2\pi^N \times \det(\mathbf{V})}} \right]$$

1: $2\pi^N$: A constant

2:
$$-\frac{1}{2}[(Y-E(Y))^t\mathbf{V}^{-1}(Y-E(Y))]$$
 : Reduces to $\frac{N}{2}$ (formally $\frac{Np}{2}$ but for univariate, p=1. Thus for comparing models this is also a constant)

3: det(**V**): error covariance of the model*

The likelihood is thus the residual error of the data under a model

*Determinants of error covariance matrices are measures of the dispersion (generalized variance) of the data. A smaller det(V) means a better fit. HOWEVER: det(V) = 0 does not necessarily mean a 'perfect' fit. Often, there is a singularity issue in the modeling (see multivariate lecture).

Brownian Motion: Example

Body size evolution in Anolis lizards

$$logL = 5.256010$$

AIC = -6.512

$$\sigma^2 = 0.01823$$

E(Y) = 4.0535 (root value)

Questions:

Is this a 'good' fit?

Is neutral evolution an appropriate model of trait change?

Data: Mahler et al. 2010

Ornstein-Uhlenbeck (OU) Models

Brownian motion: neutral change under drift (no selection)

$$dY_i\left(t\right) = \sigma dB_i\left(t\right)$$
Character change Evolutionary rate Small random perturbations

Ornstein-Uhlenbeck (OU): models both drift and selection
-Trait values 'pulled' towards optima: Θ (1 Θ :stabilizing; 2+ Θ diversifying selection)

This model is fit using a different V in the logL!

Compare models: LRT and AIC

Comparing Models

How does one compare different models?

Many approaches; two common ones are:

LRT (likelihood ratio tests)

Test measure that underlies much of parameteric statistical hypothesis testing

$$LRT = -2\log(\frac{L_F}{L_R})$$

LRT tested against X^2 with $df = k_F - k_R$ (difference in model parameters)

AIC (Akaike information criterion)

A measure of model 'fit' relative to the number of parameters required

$$AIC = -2\log L + 2(k+1)$$

 Δ AIC (AIC_F – AIC_R) > 4.0 is strong support for full model

Model Parameters*

Free parameters differ across models

Brownian motion (BM1): neutral change under drift

-2 parameters: Phylogenetic mean (μ), and rate (σ^2_y)

$$dY_i(t) = \sigma dB_i(t)$$
Character change Evolutionary rate Small random perturbations

OU1: drift and selection

-3 parameters: Phylogenetic mean (μ), and rate (σ^2_y), selection (α)

optima (θ) also specified, but 'linked' to a, so not part of 'count' of parameters

OUM: multiple optima (multiple $\alpha \& \Theta$)

OUM: Multiple Adaptive Optima

What if there is more than one optimum?

OUM: multiple optima (multiple $\alpha \& \Theta$)

Problem: how to model? Must define which taxa belong to each optimum

-We 'paint' groups on phylogeny based on biology for hypothesis

BM = OU1: Single group

OU3: optima based on size groups

OU4: size groups + ancestral group

OU(LP): size groups + 'priority' colonizing effects (who was

on island first)

Comparing Models: Example

How did Anolis body size groups (small, medium, large) evolve?

- -5 models: BM, OU₁, OU₃ OU₄ (3 group+anc), OU_{LP} (3 gp + history of colonization)
- $-OU_{LP}$ (3 gp + col. hist.) best explains body size evolution

Table 1: Performance of alternative models for body size evolution in the character displacement study

	$_{\mathrm{BM}}$	OU(1)	OU(3)	OU(4)	OU(LP)
$-2 \log \mathcal{L}$	-34.66	-34.66	-40.21	-47.22	-49.69
AIC	-30.66	-26.66	-28.21	-33.22	-37.69
SIC	-28.39	-22.12	-21.40	-25.27	-30.88
LR		0	5.55	12.56	15.03
P value		1	.24	.028	.0046

Comparing Models: Example 2

Body size evolution in *Anolis* lizards

BM1:

logL = 5.256010

AIC = -6.512

OU1:

logL = 5.256010

AIC = -4.512

OUM:

logL = 39.4849

AIC = -62.969

OUM strongly preferred

Multiple Rate Models

"How fast, as a matter of fact, do animals evolve in nature?" (Simpson, 1944)

Multiple Rate Models

E(X)

Some scenarios with 'groups' are for rates, not optima
-"Does evolution occur faster on islands than on the mainland?"

Requires model with different σ^2 on different portions of the

phylogeny

Procedurally, one 'splits' the phylogenetic covariance matrix C into components for each group, and multiplies by separate σ^2 ; then logL*

	taxon 1	taxon 2	taxon 3	taxon 4	taxon 5
taxon 1	$40\sigma_{A}^{2}+10\sigma_{B}^{2}$	$30\sigma_{A}^{2}+10\sigma_{B}^{2}$	$10\sigma_{\text{B}}^{2}$	$10\sigma_{\text{B}}^{2}$	0
taxon 2	$30\sigma_{\text{A}}^2 + 10\sigma_{\text{B}}^2$	$40\sigma_{\scriptscriptstyle A}{}^2\!\!+\!10\sigma_{\scriptscriptstyle B}{}^2$	$10\sigma_{\scriptscriptstyle B}{}^{^2}$	$10\sigma_{\scriptscriptstyle B}{}^{^2}$	0
taxon 3	$10\sigma_{\scriptscriptstyle\rm B}{}^2$	$10\sigma_{\scriptscriptstyle B}{}^2$	$50\sigma_{\scriptscriptstyle B}^{\ 2}$	$20\sigma_{\scriptscriptstyle B}{}^{^2}$	0
taxon 4	$10\sigma_{\text{B}}^{2}$	$10\sigma_{\scriptscriptstyle \rm B}{}^2$	$20\sigma_{\scriptscriptstyle B}{}^{^2}$	$50\sigma_{\scriptscriptstyle B}{}^{^2}$	0
taxon 5	0	0	0	0	$50\sigma_{\scriptscriptstyle B}{}^{^2}$

Comparing Rate Models

BM1:

$$logL = 5.256010$$

$$AIC = -6.512$$

$$\sigma^2 = 0.01823$$

BMM:

$$\begin{aligned} \log L &= 21.635 \\ P_{\text{simul}} &= 0.001 \\ AIC &= -29.307 \\ \sigma_{\text{CG}}^2 &= 0.0366 \\ \sigma_{\text{GB}}^2 &= 0.0259 \\ \sigma_{\text{TC}}^2 &= 0.0242 \\ \sigma_{\text{TG}}^2 &= 0.0058 \\ \sigma_{\text{TR}}^2 &= 0.0014 \\ \sigma_{\text{TW}}^2 &= 0.0021 \end{aligned}$$

CG highest, TR,TW lowest

BMM strongly preferred

Extensions: Comparing Rates Among Traits

One can also compare evolutionary rates among traits Does one trait evolve faster than another)?

Find *rate matrix* for set of traits:

$$\mathbf{R} = \begin{bmatrix} \sigma_1^2 \\ \sigma_{21} & \sigma_2^2 \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \sigma_1^2 & \\ \sigma_{21} & \sigma_2^2 \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix} \qquad \mathbf{R} = \frac{\left(\mathbf{Y} - E(\mathbf{Y})\right)^t \mathbf{C}^{-1} \left(\mathbf{Y} - E(\mathbf{Y})\right)}{N}$$

Obtain R_o and logL:

Estimate R_c & logL, where rates are constrained to be the same

$$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_p^2$$

$$\mathbf{R}_C = \begin{bmatrix} \sigma_1^2 & & \\ \sigma_{21} & \sigma_2^2 & \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix}$$

Compare the two models with LRT

Example

Compare morphological rates in cave-dwelling *Hydromantes*

Climbing traits evolve more slowly (consistent with evolutionary constraint)

Adams et al. 2017. Am. Nat.

Extensions: Comparing Rates Among Trees

One can also compare evolutionary rates for traits among trees "Does body size evolve faster in clade X vs. clade Y?"

TABLE 2 Body size (SVL) and shape (common phylogenetic PC2) for two lizard clades: (1) the North American iguanian subfamily Phrynosomatinae: and (2) the South American lizard tribe Liolaemini

	σ_1^2	σ_2^2	a_1	a_2	k	log(L)	
Body size (SVL)							
ML common-rate model:							
Value	0.26	-	4.18	4.26	3	-4.85	
SE	0.03	-	0.15	0.24			
ML multi-rate model:							
Value	0.19	0.33	4.18	4.26	4	-2.19	
SE	0.03	0.06	0.13	0.27			
Likelihood ratio: 5.32; p-value (based on γ^2 , df = 1): 0.021							

Method extends logic of O'Meara et al. (2006) & Adams (2013)

^{*}Note: methods for identifying rate shifts on particular branches have also been developed (e.g., Castiglione et al. 2018)

Other Evolutionary Models: Early Burst

What if evolutionary rate is variable across phylogeny? Many adaptive models predict a rapid early expansion of phenotypic diversity (a high initial rate of trait evolution that then slows down)

Early Burst Model: Contains σ^2 and 'g' (which scales rate of trait change along branches).

Other Evolutionary Models: λ and K

Lambda model: The extent to which the phylogeny predicts covariance among trait values for species (effectively transforms branches by λ)

Kappa model: Punctuational/speciation model: the extent to which trait change corresponds to speciation events (also a branch-length transformation model)

Anolis Example: Multiple Models

BM1:

logL = 5.256010

AIC = -6.512

OU1:

logL = 5.256010

AIC = -4.512

EB:

logL = 6.618

AIC = -7.235

λ:

K:

logL = 5.758

logL = 5.256

AIC = -5.517

AIC = -4.512

BMM:

logL = 21.635

AIC = -29.307

OUM:

logL = 39.4849

AIC = -62.969

OUM by far the best description of the data

Exploration: Identifying Evolutionary Models

Can we let the data tell us the best model?

-A HARD statistical problem, as it is 'unsupervised'

Several methods proposed for exploring rate-shifts on phylogeny

- 1: Bayesian MCMC (Revell et al. 2012)
 - -search for branches on tree for single largest rate shift
 - -compare single vs. two-rate model
- 2: Reversible-jump MCMC (Eastman et al. 2011)
 - -Search for multiple rate shifts

Anolis Example: Rate Shifts

Bayesian MCMC

$$\sigma^2_{1} = 0.0255$$

$$\sigma_2^2 = 0.0182$$

RJ-MCMC

Note: identified similar area of tree, but not identical clade/taxon

Data: Mahler et al. 2010

Exploration: Identifying Evolutionary Models

DCA: CAREFUL WITH THESE IMPLEMENTATIONS

- -Algorithms will try very hard to identify rate shifts*
- -Evaluating versus null (BM1) data underexplored
- -More work needed in this area

*NOTE: this is not unlike other unsupervised method in statistics such as for multivariate clustering. Approaches tend to over-identify groups when not present (high type II error) because they are maximizing a search statistic

Conclusions: Evolutionary Models

Evolutionary model comparison:

- -Fit data to phylogeny under alternative models
- -Compare fit using LRT, AIC, simulation, etc.

Very useful for evaluating macroevolutionary hypotheses

BM1, BMM, OU1, OUM, EB, λ and K common models

Evolutionary model comparison is fitting different V in the logL

DCA: Careful in interpretation! We tend to think of these as 'process-based' models, but they are phenomenological, pattern-based summaries only.

We don't have data on the branches and nodes to really get at process; all we can do is infer (take the inference with caution!)