Models of Continuous
Trait Evolution



Mapping Traits to Phylogeny

Ancestral State Estimation

-Map traits to phylogeny
-Estimate trait values at ancestral nodes (and branches)
Discrete Continuous

Data from Mabhler et al. Evol. (2010)

Sauquet et al. Nature Comm. (20017)

-Accomplished using a model of evolutionary change
-How do we define the ‘fit’ of the data under that model?



Continuous Data: Maximum Likelihood
-One approach uses maximum likelithood

-Using statistical theory, one can ask:

What 1s the probability of observing my data, given the phylogeny and
some evolutionary model?

Pr(X |, 0)

Same as: “What 1s the likelihood of some evolutionary model as
observed by conditioning the data on the phylogeny under that model?

L) =Pr(X |, 0)

Use search algorithm to maximize L(0)



Continuous Data: Brownian Motion

Common null model of evolutionary change: Brownian motion

BM embodies the Markov process such that:
Trait changes are independent from time step to time step
Outcome: no change in p, but 6% fo< time

o> =0.01

Side-note: this is the
continuous-trait model
equivalent of the Markov
process we discussed
earlier
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0
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Given this model, one can calculate the probability of observing the

trait data on the phylogeny (or equivalently, the likelihood of the model given the data conditioned and
the phylogeny)



Continuous Data: Brownian Motion

A null model of evolutionary change: Brownian motion

()= gd5, (1)
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Brownian Motion: What’s in a Likelihood?

-Components of the likelithood: 3 main parts

exp{~7[(¥ = EQ)VI(Y - ()]
V21N x det(V)

logL = log

1: 27nV: A constant

7. _%[(y — E(Y)'V (Y — E(Y))] : Reduces to%

N o . .
(formaIIyTp but for univariate, p=1. Thus for comparing models this is also a constant)

3: det(V): error covariance of the model*

The likelihood is thus the residual error of the data under a model

Recall: V= 62C the evolutionary model (covariance matrix)
-expected change along branches of phylogeny

VitVi, Visa 0
C=| v, V,+v,, 0
V3

0 0 Vv,

*Determinants of error covariance matrices are measures of the
dispersion (generalized variance) of the data. A smaller det(V) means a : J
better fit. HOWEVER: det(V) = 0 does not necessarily mean a ‘perfect’ N 3

fit. Often, there is a singularity issue in the modeling (see multivariate
1+2
lecture). Y






1+2























1















3







2




















Brownian Motion: Example

Body size evolution in Anolis lizards

logL = 5.256010
AIC =-6.512

02 =0.01823
E(Y) =4.0535 (root value)

Questions:

Is this a ‘good’ fit?
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Is neutral evolution an appropriate model of trait change?
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Ornstein-Uhlenbeck (OU) Models

Brownian motion: neutral change under drift (no selection)

=0.01

rxpzciesl
dY, (t)zadBl.(t) .
/ f \ % - species 2
S ° B
Character change Evolutionary rate  Small random perturbations s < % 3\\

Ornstein-Uhlenbeck (OU): models both drift and selection
-Trait values ‘pulled’ towards optima: ® (1 e :stabilizing; 2+ © diversifying selection)

dY; = a(p — Y (t)) + oB(t) — e

f T \ \ species 2
Character change  Strength of selection X
Distance from optimum Brownian component .
~p

6°=0.03: 0=0.5
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This model is fit using a different V in the logL.!

Compare models: LRT and AIC

Images from Butler and King 2004. Am. Nat. 164: 683-695.



Comparing Models

How does one compare different models?
Many approaches; two common ones are:

LRT (likelihood ratio tests)

Test measure that underlies much of parameteric statistical hypothesis testing

Lp

LRT = —2log(
Lg

LRT tested against X2 with df = kF_kR (difference in model parameters)

AIC (Akaike information criterion)

A measure of model ‘fit’ relative to the number of parameters required

AIC = —2logL + 2(k + 1)

AAIC (AIC; — AICy) > 4.0 1s strong support for full model



Model Parameters™

Free parameters differ across models
Brownian motion (BM1): neutral change under drift

-2 parameters: Phylogenetic mean (i), and rate (c?) o’ =0.001 o’ =0.01
dY,(t)=odB, (1)
el /
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-3 parameters: Phylogenetic mean (i), and rate (c?), selection (o)

o’ =0.03: a=0.5 6*=0.03: a=05
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OUM: multiple optima (multiple o & ®)

*Univariate only: many more parameters for multivariate Butler and King 2004. Am. Nat. 164: 683-695.



OUM: Multiple Adaptive Optima

What if there 1s more than one optimum?
OUM: multiple optima (multiple oo & ®)

Problem: how to model? Must define which taxa belong to each

optimum

-We ‘paint’ groups on phylogeny based on biology for hypothesis
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BM = OU1: Single group
OU3: optima based on size groups
OU4: size groups + ancestral group

OU(LP): size groups + ‘priority’ colonizing effects (who was
on island first)

Butler and King. 2004. Am. Nat.



Comparing Models: Example

How did Anolis body size groups (small, medium, large) evolve?

-5 models: BM, OUl, OU3 OU4 (3 group—+anc), OULP (3 gp + history of colonization)

-OUj p 3 gp+col hist) best explains body size evolution

BM or
ou(1)

ou@)

ou(4)

InE
e
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Table 1: Performance of alternative models for body size evo-
lution in the character displacement study

BM ouUfl) OU(3) OL(4) OUiLE)
—2log L —3dee  —3d4e6  —4021 —47.22 —49.69
AlC —3l66  —2666 —282]1 —33.22 —37.69
SlC —28.39 22,12 2140 —25.27 -30.88
LE 0 5.55 12.56 15.03
P value 1 24 028 L1046

Butler and King. 2004. Am. Nat.



Comparing Models: Example 2
Body size evolution in Anolis lizards

BMI1:

logL = 5.256010
AIC =-6.512

OUT: S SOV e
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OUM strongly preferred

Data: Mahler et al. 2010



Multiple Rate Models

“How fast, as a matter of fact, do animals evolve in nature ?” (simpson, 194)
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Multiple Rate Models

Some scenarios with ‘groups’ are for rates, not optima
-“Does evolution occur faster on islands than on the mainland?”’

Requires model with different 62 on different portions of the

phylogeny %

Procedurally, one ‘splits’ the phylogenetic covariance matrix C into
components for each group, and multiplies by separate ¢2; then logL*

Non-censored approach

= c; (2 ?: ‘2 taxon 1 taxon 2 taxon 3 taxon4 taxon$5 EX)

& & & & ¢ -

5 5 8 & &  taxonl|400,+100; | 3004100, | 1005 | 100y 0 dy
o taxon 2| 300,24100;? | 400,>+100;? | 100:2 | 1002 | O do
20 MY taxon 3 100’ 1002 5003 200" 0 dy
30 MY taxon 4 100y 1002 200, | 500, 0 dy
40 MY taxon 5 0 0 0 0 500, d,
50 MY

O’Meara et al. (2006)
*Again, a distinct V matrix in the loglL

Thomas et al. (2006)



Body size evolution in Anolis lizards

BMI1:

logL = 5.256010
AIC =-6.512
62=0.01823

BMM:

loglL =21.635

P~ 0.001

AIC =-29.307
o2c; = 0.0366
o2qg = 0.0259
o2 =0.0242
o216 = 0.0058
o2z =0.0014
o2y = 0.0021

CG highest, TR,TW lowest
BMM strongly preferred
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Extensions: Comparing Rates Among Traits

One can also compare evolutionary rates among traits
Does one trait evolve faster than another)?

2

Find rate matrix for set of traits: RZF . } r (Y-E(Y)) €' (Y-E(Y))
N

P
03 03 O

Obtain R and logL:

Estimate R, & logL, where rates are constrained to be the same

2
2 2 2 0y
Gl _62_..._O'p

_ 2
R.=|0oy o

2
0-3 1 0-32 0-3

Compare the two models with LRT

Adams. (2013). Syst. Biol.
Extended to multivariate: Denton and Adams, 2015. Evol.



Example
Compare morphological rates in cave-dwelling Hydromantes
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Climbing traits evolve more slowly (consistent with evolutionary
constraint) Adams et al. 2017. Am. Nat



Extensions: Comparing Rates Among Trees

One can also compare evolutionary rates for traits among trees
“Does body size evolve faster in clade X vs. clade Y?”

(a) Phrynosomatinae body size (b) Liolaemini body size

Q.

-

TABLE 2 Body size (SVL) and shape (common phylogenetic PC2)
for two lizard clades: (1) the Morth American iguanian subfamily
Phrynosomatinae; and (2) the South American lizard tribe Liolaemini
Uf cg a, a, k log(L)
Body size (SVL)

SVL (mm)

SVL (mm)
LSRRG

ML common-rate model:
ol Value 0.26 - 4.18 4.26 3 -4.85
[ = SE 003 - 015 024
e ML multi-rate model:

FEEgEE

lhobal

i Value 0.19 0.33 418 426 4 -2.19
= SE 0.03 0.06 0.13 0.27
|t Likelihood ratio: 5.32; p-value (based on ¥ df = 1): 0.021

b liopaud

i

3

:

1L

g_l I I I 1 g_I I I I 1
0.00 019 038 056 075 0.00 019 037 056 0.74

time (ma x 100) time (ma x 100)

Method extends logic of O’Meara et al. (2006) & Adams (2013)

*Note: methods for identifying rate shifts on particular branches have also been developed (e.g., Castiglione et al. 2018)
Revell et al. 2018. MEE



Other Evolutionary Models: Early Burst

What if evolutionary rate is variable across phylogeny?
Many adaptive models predict a rapid early expansion of phenotypic
diversity (a high initial rate of trait evolution that then slows down)

Early Burst <

-'...n *' "'Ju#.;‘.ijl_'l ll ;"Jﬁ

Ko i e AT - o
“'ﬁlﬂ:' P'-.#'
:EGU" 4 't'r 5&?&;;
(] e -,r-... P ::.a::_'. i
Late Burst

T. Ingram: www.anoleannals.org

Early Burst Model: Contains 62 and ‘g’ (which scales rate of trait
change along branches).



Other Evolutionary Models: A and K

Lambda model: The extent to which the phylogeny predicts covariance
among trait values for SpeCieS (effectively transforms branches by L)

AT
i

Original (A=1) A

0.5 A =0 (star)

Kappa model: Punctuational/speciation model: the extent to which trait
Change COI'reSpOndS to SpeCiatiOIl €VENLtS (also a branch-length transformation model)

*These models alter elements of V for the loglL Pagel 1999 (Nature)



BMI:
logl.=5.256010
AIC =-6.512

Oul:
logl.=5.256010
AIC = -4.512

EB:
logL = 6.618
AIC =-7.235

A K:
logl =5.758 logl. = 5.256
AIC=-5.517 AIC =-4.512

BMM:
logL =21.635
AIC = -29.307

OUM:
logL = 39.4849
AIC =-62.969

Anolis Example: Multiple Models
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OUM by far the best description of the data
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Exploration: Identifying Evolutionary Models

Can we let the data tell us the best model?
-A HARD statistical problem, as it is ‘unsupervised’

Several methods proposed for exploring rate-shifts on phylogeny

1: Bayesian MCMC (Revell et al. 2012)
-search for branches on tree for single largest rate shift
-compare single vs. two-rate model

2: Reversible-jump MCMC (Eastman et al. 2011)
-Search for multiple rate shifts



Anolis Example: Rate Shifts
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o2, =0.0255 RI-MCMC

2 _ Note: identified similar area of tree,
S} 0.0182 but not identical clade/taxon

Data: Mahler et al. 2010



Exploration: Identifying Evolutionary Models

DCA: CAREFUL WITH THESE IMPLEMENTATIONS
-Algorithms will try very hard to 1dentify rate shifts*
-Evaluating versus null (BM1) data underexplored
-More work needed 1n this area

*NOTE: this is not unlike other unsupervised method in statistics such as for multivariate clustering.
Approaches tend to over-identify groups when not present (high type II error) because they are
maximizing a search statistic



Conclusions: Evolutionary Models

Evolutionary model comparison:
-Fit data to phylogeny under alternative models
-Compare fit using LRT, AIC, simulation, etc.

Very useful for evaluating macroevolutionary hypotheses

BM1, BMM, OU1, OUM, EB, A and K common models

Evolutionary model comparison i1s fitting different V 1n the logL

DCA: Careful in interpretation! We tend to think of these as ‘process-based’ models, but they are
phenomenological, pattern-based summaries only.

We don’t have data on the branches and nodes to really get at process; all we can do is infer (take the
inference with caution!)
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