Phylogenetic Comparative Methods for Multivariate Data

The (Incomplete) Road to Comparative Methods

2000s: Maturation phase

Present day: PCMs: A diverse toolkit for evaluating evolutionary hypotheses

The (Incomplete) Road to Geometric Morphometrics

Morphological quantification has advanced dramatically*

GMM provides greater biological realism, but...

- -greater data complexity
- -requires new mathematical theory
- -analytical and statistical challenges

*See historical treatments in: Reyment, 1996; Bookstein 1998, Adams et al. 2013; Bookstein 2014, 2018, 2019, among others

High-Dimensional Data

GMM (+ new technology) leads to ever-complex & HD datasets

From this ...

Obtain this

How do we handle such phenotypes with statistical rigor?

Phylogenetic Comparative Methods

PCMs *condition* the data on the phylogeny during the analysis

Empirical Goal: Evaluate evolutionary hypotheses while accounting for (phylogenetic) non-independence

Sherratt, Alejandrino, Kraemer, Serb, & Adams (2016)

Requires an evolutionary model of how trait variation is expected to accumulate

Testing Patterns: Brownian Motion

Brownian motion (BM): a null model of trait change

Trait changes are independent from time step to time step Results in: $\Delta\mu=0$, but $\sigma^2 \uparrow \propto$ time

Side-note: this is the continuous-trait model equivalent of the Markov process, and is intimately related to Gaussian theory and the normal distribution

Felsenstein (1973; 1985)

The PCM Toolkit

Phylogenetic Signal

Phylomorphospace

Evolutionary Rates

Evolutionary Models

All are derived from the general PCM model (PGLS)

The General PCM Model

The primary statistical model of PCM: GLS (generalized least squares)

*V can have other formulations for alternative evolutionary models

GMM-PCM Merger: Challenges

This GMM/PCM approach requires that one:

- 1: Condition multivariate data on phylogeny & fit model parameters
- 2: Obtain robust summary statistics
- 3: Evaluate significance and effect sizes in reliable manner

These were rather significant analytical challenges to overcome!

Why is There a Problem?

Why not just 'scale up' standard PCMs for GM-data?

Example: phylogenetic regression

 $\mathbf{Y} = \mathbf{X}\widehat{\boldsymbol{\beta}} + \mathbf{E} \qquad \mathbf{E} \sim \mathcal{N}(\mathbf{0}, \mathbf{V})$

Power decreases as *p*-dimensions increases

Why does this happen?

Adams (2014) Adams and Collyer (2018)

The Curse of Parametric Hypothesis Testing

Standard PCMs are rooted in likelihood-based statistical theory

Translation: divide by zero!

We need another solution for highly multivariate data!

See: Adams (2014), (2015) Adams and Collyer (2018a), (2018b); Adams and Collyer (2019)

Multivariate PCMs: The Solution

Forgo standard ML and parametric approaches for statistical evaluation, and use robust methods

New GMM/PCM Approach:

- 1: Condition data on phylogeny & fit model parameters
- 2: Obtain robust summary measures (avoid $|\mathbf{V}| = 0$)
- 3: Evaluate significance and effect sizes *NOT* using log*L*

I: Conditioning on Phylogeny

Three equivalent algebraic implementations

1: Phylogenetically Independent Contrasts

$$\widehat{\boldsymbol{\beta}} = \left(\mathbf{X}_{pic}^{t} \mathbf{X}_{pic}\right)^{-1} \mathbf{X}_{pic}^{t} \mathbf{Y}_{pic}$$

See: Garland and Ives (2000) Rohlf (2006); Blomberg et al (2012); Adams (2014a)

Felsenstein (1985)

I: Conditioning on Phylogeny

Three equivalent algebraic implementations

2: Phylogenetic (GLS) Regression ($\mathbf{Y} = \mathbf{X}\widehat{\boldsymbol{\beta}} \mid phy$)

Accounts for phylogeny during analysis

Images from Collyer & Adams (2021)

 $\widehat{\boldsymbol{\beta}} = \left(\mathbf{X}^t \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^t \mathbf{V}^{-1} \mathbf{Y}$

See: Garland and Ives (2000) Rohlf (2006); Blomberg et al (2012); Adams (2014a)

Grafen (1989)

I: Conditioning on Phylogeny

Three equivalent algebraic implementations

3: Phylogenetic Transformation (GLS \rightarrow OLS)

We utilize this procedure!

Garland and Ives (2000) Adams (2014)

II: Robust Summary Statistics

Leverage geometry to obtain robust summary statistics

Images from Anderson (2001) See: Gower (1966); Goodall (1991); Anderson (2001)

One way: Sums-of-squares from object distances*

Avoids $|\mathbf{V}| = 0$, but still obtains: SS, MS, F, R², etc.

*Note: approach also used for Goodall's F-test

See: Adams (2014a), (2014b) (2014c) Adams and Collyer (2015), (2018a), (2018b); Adams and Collyer (2019)

III: Residual Randomization

Significance testing via RRPP (Residual Randomization in Permutation Procedures)

1: Fit models

obtain β , and summary stats, SS, MS, R², F

- 2: Permute $\mathbf{E}_{\mathbf{R}}$ (residuals of \mathbf{Y}) obtain pseudo-values: $\mathbf{y} = \mathbf{\hat{Y}} + \mathbf{E}_{r}^{*}$
- 3: Fit model with *y*, repeat

4: Effect size:
$$z = \frac{(\log(F) - \mu_{\log(F_r)})}{\sigma_{\log(F_r)}}$$

*Note: Proper permutation requires identifying correct exchangeable units (Commanges 2003: Adams and Collyer 2018a,b).

Collyer, Sekora, Adams (2015) Adams & Collyer. (2016) Adams & Collyer. (2018a); (2018b)

RRPP and **Power**

Breaks Rao's paradox

Adams 2014. Evolution

Adams and Collyer 2018. Evolution

Displays appropriate type I error and high power

RRPP Properties

<u>RRPP</u> sampling distribution matches theory (but extends to p >> N)

Estimated covariance matrices equivalent to sampling a Wishart distribution Adams and Collyer (2018b)

<u>Conclusion: RRPP provides analytics for multivariate PCMs (and other applications)</u>

Summary: PCM-GMM Merger

Phylo-transform + RRPP enables multivariate PCMs

2: Phylogenetic PLS (evolutionary covariation of 2 *SETS* of variables)

 Image: Collyer Collyer

Adams (2014a), 2014b), (2014c) Adams & Felice (2104) Adams and Collyer (2015); Denton and Adams (2015) Adams and Collyer (2018a), (2018b), (2019) Collyer, Baken, Adams (2022)

How to Visualize Evolutionary Patterns?

Phylomorphospace (PCA)

Align data to directions of maximal variation

PCA.w.phylo

Phylogenetic PCA (pPCA)

Align data to directions *independent* of phylogenetic signal (1st dimension)

phylo PCA

Interpretation can be challenging (e.g., with mixed ecological and phylogenetic signal)

Phylogenetically Aligned Components: PACA

Align data to directions that maximize phylogenetic signal

PACA reveals phylogenetic trends in data irrespective of other signals!

Collyer and Adams (2021)

Phylogenetic 'Correlation' (PLS)

Account for phylogeny during PLS correlation -PLS of evolutionary covariance (rate) matrix

$$\mathbf{R} = \frac{\left(\mathbf{Y} - E(\mathbf{Y})\right)^{t} \mathbf{C}^{-1} \left(\mathbf{Y} - E(\mathbf{Y})\right)}{N - 1}$$
$$\mathbf{R}_{12} = \mathbf{U}_{\mathbf{R}1} \mathbf{D} \mathbf{V}_{\mathbf{R}2}^{t}$$

-Equivalently found from PLS of PY (phylo-transformed data)

-Significance found from permutation of phylo-transformed data

Phylogenetic PLS: Example

PLS of cranium vs. mandible in Plethodon

Phylogenetic Signal

The degree to which phenotypic similarity associates with phylogenetic relatedness

-Blomberg's K: one measure (Adams, 2014 generalized to multivariate)

$$K = \frac{\left(\mathbf{Y} - E(\mathbf{Y})\right)^{t} \left(\mathbf{Y} - E(\mathbf{Y})\right)}{\left(\mathbf{Y} - E(\mathbf{Y})\right)^{t} \mathbf{C}^{-1} \left(\mathbf{Y} - E(\mathbf{Y})\right)} / \frac{tr(\mathbf{C}) - N(\mathbf{1}^{t} \mathbf{C}^{-1} \mathbf{1})^{-1}}{N-1}$$

- Pagel's λ : a branch-length transformation during logL fitting

$$\log L = \log \left[\frac{\exp \left(-0.5 \left(\mathbf{Y} - E(\mathbf{Y}) \right)^{t} \mathbf{V}^{\lambda - 1} \left(\mathbf{Y} - E(\mathbf{Y}) \right) \right)}{\sqrt{(2\pi)^{Np} \times |\mathbf{V}^{\lambda}|}} \right]$$

Original (λ =1) λ = 0.5

 $\lambda = 0$ (star)

Phylogenetic Signal

Both K and λ are related to a permutation-based Z-score, which can be used to compare the strength of signal across datasets

FIGURE 1 Plot of phylogenetic tree with x, y values, plus frequency histograms for the RRPP log-likelihood values for two variables, X and Y. Vertical lines indicate observed values. In the last panel, histograms have been combined for standardized values

Collyer, Baken, Adams (2022). MEE.

Comparing Evolutionary Models

What evolutionary model best describes trait variation?

-Fit data to phylogeny under differing evolutionary models

Model comparisons of:

- 1: Evolutionary rates (and covariances): BM1, BMM, etc.
- 2: Evolutionary 'modes': BM, OU1, OUM, etc.

Methods for multivariate data:

- 1: *logL_{Mult}* (Revell and Harmon, 2008; Clavel et al. 2015)
- 2: σ^2_{mult} (Adams, 2014; Denton and Adams, 2015)
- 3: $\Sigma \log L_{indiv}$ (Ingram & Mahler, 2013; Grundler and Rabosky, 2014; Moen et al. 2016)
- 4: PCL (Goolsby, 2016)

Comparing Evolutionary Models: logL_{mult}

Evolutionary rate for a trait σ^2 : Phylogenetically-standardized variance

-Estimated from data and phylogeny under Brownian motion (see Felsenstein 1973)

Revell & Harmon 2008. Ev. Ecol. Res.

Is there evidence for multiple evolutionary rates on the phylogeny?

1: Define 'regimes' for models (BM1, BMM, etc.)

- 2: Estimate σ^2 (**R** multivariate) and logL_{mult}
- 3: Compare logL (LRT tests, AIC, phylogenetic simulation, etc).

logL_{mult}: Problems

Type I error of LRT \uparrow with p (not useful for high-dimensional data)

 $logL_{Mult}$ cannot be computed when p $\geq N$

For multi-dimensional traits, should have a single rate, not a matrix

LRT based on the logL_{mult} not a general solution for high-D data

Adams. 2014b. Syst. Biol. Adams and Collyer 2018. Syst. Biol. Adams and Collyer, 2019. Ann. Rev. Ecol. Evol. Syst.

Pairwise Composite Likelihood

Pairwise composite likelihood (PCL) as an alternative to logL_{mult}

1: Define 'regimes' for models (BM1, BMM, etc.)

2:Fit H₀ and H₁ for <u>PAIRS</u> of variables; obtain logL_{pair}

- 3: Sum across $logL_{pair}$ for overall fit: $\Sigma logL_{pair}$
- 4: Simulate data under H₀ and compare

Pairwise Composite Likelihood: Problems Pairwise composite likelihood to compare BM1 vs. BMM

•Sensitive to ALL aspects of multivariate metric spaces

• PCL <u>NOT</u> useful for comparing evolutionary rates

Adams and Collyer 2018. Syst. Biol.

Generalize σ^2 for multidimensional data: <u>net evolutionary rates</u>

- Define 'regimes' for models (BM1, BMM)
- Phylogenetic transform of data
- •Estimate σ^2_{mult} for BM1, BMM
- •Permute (or simulate), repeat

Adams 2014a. *Syst. Biol.* Denton and Adams. 2015. *Evol.*

•Method rotation-invariant, and appropriate Type I error/power

• σ_{mult}^2 <u>IS</u> useful for comparing multivariate evolutionary rates!

Adams and Collyer 2018. Syst. Biol.

Complex Model Comparisons

Evolutionary models go beyond Brownian motion

-BM, OU, EB, ACDC, etc.

-Fit data to phylogeny under differing evolutionary models

Evolutionary Models

Methods for multivariate data:

- 1: *logL_{Mult}* (Clavel et al. 2015: extending Revell & Harmon, 2008)
- 2: $\Sigma \log L_{indiv}$ (Ingram & Mahler, 2013; Grundler and Rabosky, 2014; Moen et al. 2016)
- 3: PCL (Goolsby, 2016)

logL_{mult}: Problems

1: logL_{mult} (various implementations)

AIC: Model misspecification \uparrow with *p* (not useful for high-dimensional data)

<u>AIC from logL_{Mult} not general solution for model comparisons with</u> <u>high-D data</u>

Adams and Collyer 2018. Syst. Biol. Adams and Collyer, 2019. Ann. Rev. Ecol. Evol. Syst.

PCL: Problems and Consequences

2: PCL

•Sensitive to ALL aspects of multivariate metric spaces

BM-simulations (p=8) on a 32 species phylogeny (mean of 100 simulations per scenario)

•High misspecification and arbitrary results

Data simulated under BM1 (N=32, p=8)

PCL <u>NOT</u> useful

Adams and Collyer 2018. Syst. Biol. Adams and Collyer, 2019. Ann. Rev. Ecol. Evol. Syst.

$\Sigma log L_{indiv}$: Surface-like Methods

- 3: Evaluate multivariate space dimension by dimension
 - Assume trait independence
 - Fit evolutionary models separately (on PPC₁, PPC₂, etc.)
 - •Obtain $\Sigma \log L$ and corresponding AIC to infer best model

(Ingram and Mahler, 2013; Grundler and Rabosky, 2014; Moen et al. 2016)

Mathematical Problems:

- Individual PCs misspecify model
 - •EB preferred on lower PCs even for BM data (Uyeda et al. 2015)

• Dimensions not independent evolutionarily (mis-application of Edward's likelihood theorem)

- •Independence when **R** (NOT **S!**) is diagonal
- •ONLY occurs under BM for PPCA
- •For all other models, dimensions evolutionarily correlated
- •Thus, $\Sigma \log L \neq Log L_{Mult}$

$\Sigma log L_{indiv}$ Consequences

Consequence: $\Sigma \log_{ind}$ greatly supports overly complex models

Example: Simulate datasets under BM, infer best model

- 2 or more inferred OU optima = misspecification

Data simulated under BM1 (N=32, p=8)

Result: > 95% model misspecification!

-NOTE: Comparing observed pattern to set of simulated outcomes post-hoc is not informative, as one cannot distinguish the 'true' pattern in the observed from the pattern generated by method

Conclusion: $\Sigma \log_{ind}$ methods not reliable

Conclusions and Future Directions

Multivariate PCM not trivial

-Algebraic generalizations appropriate mathematically

-Useful for hypotheses of:

- Phylogenetic signal (K_{mult})
 ANOVA/regression (D-PGLS)
 Correlation (PPLS)
 Not evolutionary rates (σ²)
- 4: Net evolutionary rates (σ^2_{mult})

Analysis Type	logL _{Mult}	ΣlogL	PCL	MultG
Phylogenetic Signal	-	-	-	Yes (K _{mult})
Phylogenetic ANOVA	-	-	NO	Yes (D-PGLS)
Phylogenetic Regression	-	-	NO	Yes (D-PGLS)
Phylogenetic Covariation (blocks of variables)	-	-	NO	Yes (P-PLS)
Comparing Evolutionary Models: BM1 vs BMM	Limited (when N>>>p)	-	NO	Yes (net rate only)
Comparing Evolutionary Models:	No	No	No	-
BM1 vs BMM vs OU1 vs OUM				

Current limitation: Brownian motion only

Conclusions and Future Directions

Multivariate PCM not trivial

-Evolutionary model comparisons remain a challenge

Analysis Type	logL _{Mult}	ΣlogL	PCL	MultG
Phylogenetic Signal	-	-	-	Yes (K _{mult})
Phylogenetic ANOVA	-	-	NO	Yes (D-PGLS)
Phylogenetic Regression	-	-	NO	Yes (D-PGLS)
Phylogenetic Covariation (blocks of	-	-	NO	Yes (P-PLS)
Comparing Evolutionary Models: BM1 vs BMM	(when N>>p)	-	NO	Yes (net rate only)
Comparing Evolutionary Models:	No	No	No	-
BM1 vs BMM vs OU1 vs OUM				

Multivariate Ornstein-Uhlenbeck models a particular challenge

We lack a robust multivariate method for evolutionary model comparisons!

Adams and Collyer 2018. Syst. Biol. Adams and Collyer, 2019. Ann. Rev. Ecol. Evol. Syst.