
Phylogenetic Comparative 
Methods for Multivariate Data



70s – early 80s: early attempts
Nested ANOVA
Phylogenetic autocorrelation

2000s: Maturation phase 
Synthesis: PIC, PGLS, Phylo-transform
Complex model comparison (BM1, BMM, OU1, OMM)
Bayesian methods
Parameter-shift methods (e.g., MEDUSA, BAMM)
Discrete diversification associations (BiSSe family)

80s – 90s: ‘niche expansion’
PGLS
Phylogenetic signal (λ, K)
Phylogenetic ANOVA
Evolutionary models (BM1, OU1, ACDC, λ)
Diversity plots (LTT & DTT)
Diversification rates 
Discrete trait change models

1985: The Breakthrough
Phylogenetic Independent
Contrasts (PIC)

~2010s: Multivariate +GMM

Present day: PCMs: A diverse toolkit for evaluating evolutionary hypotheses

The (Incomplete) Road to Comparative Methods



The (Incomplete) Road to Geometric Morphometrics

Categories
Counts

Rank-Order
A>B>C

Landmarks, curves, surfaces
(geometric morphometrics)

GMM provides greater biological realism, but… 
-greater data complexity 
-requires new mathematical theory 
-analytical and statistical challenges

Linear Distances
(multivariate morphometrics)

Morphological quantification has advanced dramatically*

Vs.

Scherz et al. 
(2017)

Adams & Rohlf (2000)

Friess 2010

Cailliet et al. (1996)

*See historical treatments in: Reyment, 1996; Bookstein 1998, Adams et al. 2013; Bookstein 2014, 2018, 2019,  among others

Data Types



High-Dimensional Data
GMM (+ new technology) leads to ever-complex & HD datasets

How do we handle such phenotypes with statistical rigor? 

Bardua et al. 2019

1469 landmarks =
4407 variables

From this … Obtain this



Phylogenetic Comparative Methods
PCMs condition the data on the phylogeny during the analysis 

Empirical Goal: Evaluate evolutionary hypotheses while accounting for 
(phylogenetic) non-independence

Requires an evolutionary model of how trait variation is expected to 
accumulate

Sherratt, Alejandrino, Kraemer, Serb, & Adams (2016)



Testing Patterns: Brownian Motion

Brownian motion (BM): a null model of trait change
Trait changes are independent from time step to time step
Results in: ∆µ=0, but σ2 ↑ ∝ time

Felsenstein (1973; 1985)
Side-note: this is the continuous-trait model equivalent of the Markov process, 
and is intimately related to Gaussian theory and the normal distribution



The PCM Toolkit

Evolutionary Rates

Phylogenetic Regression (PIC & PGLS)PhylomorphospacePhylogenetic Signal

BM                         OU

Evolutionary Models

All are derived from the general PCM model (PGLS)



The General PCM Model
The primary statistical model of PCM: GLS (generalized least squares)

Continuous 
Response Data

The Design Error: 𝒩𝒩(0,𝐕𝐕)
(as described by phylogeny)

𝐘𝐘 = 𝐗𝐗�𝛃𝛃 + 𝐄𝐄

*V can have other formulations for alternative evolutionary models 

V=𝐑𝐑⨂

Friess 2010

1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

Island vs. Mainland

shape region



GMM-PCM Merger: Challenges

This GMM/PCM approach requires that one:
1: Condition multivariate data on phylogeny & fit model parameters
2: Obtain robust summary statistics
3: Evaluate significance and effect sizes in reliable manner

These were rather significant analytical challenges to overcome!

Shape ~ Region | phylogeny

Friess 2010

1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1

= *β + ε 



Why is There a Problem?
Why not just ‘scale up’ standard PCMs for GM-data?

Example: phylogenetic regression

Power decreases as p-dimensions increases

Why does this happen? 

𝐘𝐘 = 𝐗𝐗�𝛃𝛃 + 𝐄𝐄 𝐄𝐄 ~ 𝒩𝒩(0,𝐕𝐕)

Adams (2014)
Adams and Collyer (2018)



The Curse of Parametric Hypothesis Testing
Standard PCMs are rooted in likelihood-based statistical theory

See: Adams (2014), (2015)
Adams and Collyer (2018a), (2018b); Adams and Collyer (2019)

log𝐿𝐿 = log

logL= …
…+ 𝐕𝐕

The problem?      As  𝐕𝐕 → 𝟎𝟎 as 𝒑𝒑 → 𝒏𝒏

Translation: divide by zero!

We need another solution for highly multivariate data!



Multivariate PCMs: The Solution
Forgo standard ML and parametric approaches for statistical 
evaluation, and use robust methods

New GMM/PCM Approach:
1: Condition data on phylogeny & fit model parameters
2: Obtain robust summary measures (avoid 𝐕𝐕 = 0)
3: Evaluate significance and effect sizes NOT using logL

See: Adams (2014a), (2014b) (2014c)
Adams and Collyer (2015), (2018a), (2018b); Adams and Collyer (2019)



I: Conditioning on Phylogeny
Three equivalent algebraic implementations

1: Phylogenetically Independent Contrasts

See: Garland and Ives (2000)
Rohlf (2006); Blomberg et al (2012); Adams (2014a)

�𝛃𝛃 =

Felsenstein (1985)

From Harvey & Pagel (1991)

Calculate PICs

Analysis of PICs



�𝛃𝛃 =

I: Conditioning on Phylogeny
Three equivalent algebraic implementations

2: Phylogenetic (GLS) Regression (𝐘𝐘 = 𝐗𝐗�𝛃𝛃 | 𝒑𝒑𝒑𝒑𝒑𝒑)

Accounts for phylogeny during analysis

Images from Collyer & Adams (2021)
Grafen (1989)

Before

After: 
Eresid independent 
of phylogeny

See: Garland and Ives (2000)
Rohlf (2006); Blomberg et al (2012); Adams (2014a)



I: Conditioning on Phylogeny
Three equivalent algebraic implementations

3: Phylogenetic Transformation (GLSOLS)

See: Garland and Ives (2000)
Rohlf (2006); Blomberg et al (2012); Adams (2014a)

Garland and Ives (2000)
Adams (2014)

We utilize this procedure!

Project data to 
phylogenetically-
transformed space

Analysis of Py vs. Px

�𝛃𝛃 =



II: Robust Summary Statistics

Leverage geometry to obtain robust summary statistics

One way: Sums-of-squares from object distances*

Avoids 𝐕𝐕 = 0, but still obtains: SS, MS, F, R2, etc.

Images from Anderson (2001)
See: Gower (1966); Goodall (1991); Anderson (2001)

*Note: approach also used for Goodall’s F-test
See: Adams (2014a), (2014b) (2014c)

Adams and Collyer (2015), (2018a), (2018b); Adams and Collyer (2019)



III: Residual Randomization
Significance testing via RRPP (Residual Randomization in Permutation Procedures)

1: Fit models 
obtain β, and summary stats, SS, MS, R2, F

2: Permute ER (residuals of Y)
obtain pseudo-values: 𝒑𝒑 = �𝐘𝐘 + 𝐄𝐄𝒓𝒓∗

3: Fit model with 𝒑𝒑, repeat

4: Effect size: z =
(log(𝐹𝐹)−𝜇𝜇log(𝐹𝐹𝑟𝑟))

𝜎𝜎log(𝐹𝐹𝑟𝑟)

Collyer, Sekora, Adams (2015) 
Adams & Collyer. (2016)

Adams & Collyer. (2018a); (2018b)
*Note: Proper permutation requires identifying correct exchangeable units 
(Commanges 2003: Adams and Collyer 2018a,b). 

Full
𝐘𝐘 = 𝐗𝐗𝐗𝐗 + 𝐗𝐗𝟐𝟐 + 𝐄𝐄𝑓𝑓

Reduced 
𝐘𝐘 = 𝐗𝐗𝐗𝐗 + 𝐄𝐄𝑟𝑟

Fobs



RRPP and Power
Breaks Rao’s paradox 

Displays appropriate type I 
error and high power



RRPP Properties
RRPP sampling distribution matches theory (but extends to p>>N)

Conclusion: RRPP provides analytics for multivariate PCMs (and 
other applications)

Correct parameter estimates 
Adams and Collyer (2018a)

Estimated covariance matrices 
equivalent to sampling a Wishart

distribution
Adams and Collyer (2018b)

Empirical sampling 
distribution matches theory

Adams and Collyer (2018a)



Summary: PCM-GMM Merger
Phylo-transform + RRPP enables multivariate PCMs

This facilitates investigations of the macroevolution
of shape and other complex phenotypes

Adams (2014a), 2014b), (2014c)
Adams & Felice (2104)

Adams and Collyer (2015); 
Denton and Adams (2015)

Adams and Collyer (2018a), (2018b), (2019)
Collyer, Baken, Adams (2022)

3: Net Evolutionary Rates

1: PGLS: Phylogenetic ANOVA/Regression

4: Phylogenetic Signal

2: Phylogenetic PLS
(evolutionary covariation 

of 2 SETS of variables)

Y1

Y 2



How to Visualize Evolutionary Patterns? 

Phylogenetic PCA (pPCA) 
Align data to directions independent
of phylogenetic signal (1st dimension)

Phylomorphospace (PCA) 
Align data to directions of maximal variation

Interpretation can be challenging (e.g., with mixed ecological and phylogenetic signal)



Phylogenetically Aligned Components: PACA

Collyer and Adams (2021)

Align data to directions that maximize phylogenetic signal

PACA reveals phylogenetic trends in data irrespective of other signals!

Data 
PBM + Eecol + Rnoise

Data 
PBM + Rnoise



Account for phylogeny during PLS correlation
-PLS of evolutionary covariance (rate) matrix

-Equivalently found from PLS of PY (phylo-transformed data)

-Significance found from permutation of phylo-transformed data

( )( ) ( )( )
1

E E
N

=
−

t -1Y - Y C Y - Y
R

12 1 2
t= R RR U DV

Adams and Felice 2014. PloS One.
Adams and Collyer. 2018. Syst. Biol.

Phylogenetic ‘Correlation’ (PLS)



PLS of cranium vs. mandible in Plethodon

Adams and Felice 2014. PloS One. 

Phylogenetic PLS: Example



The degree to which phenotypic similarity associates with 
phylogenetic relatedness 

-Blomberg’s K: one measure (Adams, 2014 generalized to multivariate)

- Pagel’s λ: a branch-length transformation during logL fitting

Phylogenetic Signal

( )( ) ( )( )
( )( ) ( )( )

( )
1

E E tr NK
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−
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log𝐿𝐿 = log
exp −0.5 )𝐘𝐘 − 𝐸𝐸(𝐘𝐘 𝑡𝑡𝐕𝐕𝝀𝝀−1 )𝐘𝐘 − 𝐸𝐸(𝐘𝐘
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Original (λ=1)    λ = 0.5        λ = 0 (star)



Both K and λ are related to a permutation-based Z-score, which can 
be used to compare the strength of signal across datasets

Phylogenetic Signal

Collyer, Baken, Adams (2022). MEE. 



What evolutionary model best describes trait variation? 

-Fit data to phylogeny under differing evolutionary models

Model comparisons of: 
1: Evolutionary rates (and covariances):  BM1, BMM, etc.
2: Evolutionary ‘modes’: BM, OU1, OUM, etc.

Methods for multivariate data: 
1: logLMult (Revell and Harmon, 2008; Clavel et al. 2015)

2: σ2
mult (Adams, 2014; Denton and Adams, 2015)

3: ΣlogLindiv (Ingram & Mahler, 2013; Grundler and Rabosky, 2014; Moen et al. 2016)

4: PCL (Goolsby, 2016)

BM                                          OU

Evolutionary Models

Butler and King 2004

Comparing Evolutionary Models



Is there evidence for multiple evolutionary rates on the phylogeny? 

1: Define ‘regimes’ for models (BM1, BMM, etc.)

2: Estimate σ2 (R multivariate) and logLmult

3: Compare logL (LRT tests, AIC, phylogenetic simulation, etc).  

Evolutionary rate for a trait σ2: Phylogenetically-standardized variance
-Estimated from data and phylogeny under Brownian motion (see Felsenstein 1973)

Vs.

Felsenstein 1973. Am J. Hum. Gen.

( )( ) ( )( )2 E E
N

σ =
t -1Y - Y C Y - Y

2
1

2
21 2
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σ
σ σ
σ σ σ

 
 =  
  

R

Revell & Harmon 2008. Ev. Ecol. Res. 

Comparing Evolutionary Models: logLmult



Type I error of LRT ↑ with p (not useful for high-dimensional data)

logLMult cannot be computed when p≥N

For multi-dimensional traits, should have a single rate, not a matrix

LRT based on the logLmult not a general solution for high-D data

Adams 2014b. Syst. Biol. 
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Adams and Collyer, 2019. Ann. Rev. Ecol. Evol. Syst.

logLmult: Problems



Pairwise composite likelihood (PCL) as an alternative to logLmult

1: Define ‘regimes’ for models (BM1, BMM, etc.)

2:Fit H0 and H1 for PAIRS of variables; obtain logLpair

3: Sum across logLpair for overall fit: ΣlogLpair

4: Simulate data under H0 and compare

Goolsby 2016. Syst. Biol.

Vs.

Pairwise Composite Likelihood



Pairwise composite likelihood to compare BM1 vs. BMM

•Sensitive to ALL aspects of multivariate metric spaces

•Arbitrary results
•Orientation-dependent
•Cov-Y dependent

•PCL NOT useful for comparing evolutionary rates
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Pairwise Composite Likelihood: Problems



Adams 2014a. Syst. Biol.
Denton and Adams. 2015. Evol.

•Define ‘regimes’ for models (BM1, BMM)
•Phylogenetic transform of data
•Estimate σ2

mult for BM1, BMM
•Permute (or simulate), repeat

•Method rotation-invariant, and appropriate Type I error/power

• 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡
2 IS useful for comparing multivariate evolutionary rates!

,0 ,02
t

mult N
σ = U UPD PD

Generalize σ2 for multidimensional data: net evolutionary rates

σ2
mult vs. σ2

mult.pcadata
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Evolutionary models go beyond Brownian motion
-BM, OU, EB, ACDC, etc.
-Fit data to phylogeny under differing evolutionary models

Methods for multivariate data: 
1: logLMult (Clavel et al. 2015: extending Revell & Harmon, 2008)

2: ΣlogLindiv (Ingram & Mahler, 2013; Grundler and Rabosky, 2014; Moen et al. 2016)

3: PCL (Goolsby, 2016)

BM                         OU

Evolutionary Models

Butler and King 2004

Complex Model Comparisons



1: logLmult (various implementations)

AIC: Model misspecification ↑ with p (not useful for high-dimensional data)

AIC from logLMult not general solution for model comparisons with 
high-D data

BM1-simulations 
(N=32)p = 4

p = 8

p = 12

N = 32

BM1 vs. OU1
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logLmult: Problems



2: PCL
•Sensitive to ALL aspects of multivariate metric spaces

•High misspecification and arbitrary results

•PCL NOT useful
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PCL: Problems and Consequences



3: Evaluate multivariate space dimension by dimension
•Assume trait independence
•Fit evolutionary models separately (on PPC1, PPC2, etc.)
•Obtain ΣlogL and corresponding AIC to infer best model

Mathematical Problems:
•Individual PCs misspecify model

•EB preferred on lower PCs even for BM data (Uyeda et al. 2015)

•Dimensions not independent evolutionarily (mis-application of Edward’s 
likelihood theorem)

•Independence when R (NOT S!) is diagonal
•ONLY occurs under BM for PPCA
•For all other models, dimensions evolutionarily correlated
•Thus, ΣlogL ≠ LogLMult

(Ingram and Mahler, 2013; Grundler and 
Rabosky, 2014; Moen et al. 2016)

Adams and Collyer 2018. Syst. Biol.

ΣlogLindiv: Surface-like Methods



Consequence: Σlogind greatly supports overly complex models

Example:  Simulate datasets under BM, infer best model 
- 2 or more inferred OU optima = misspecification

Result: > 95% model misspecification!

-NOTE: Comparing observed pattern to set of simulated outcomes post-hoc is not informative,
as one cannot distinguish the ‘true’ pattern in the observed from the pattern generated by method 

Conclusion: Σlogind methods not reliable
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Adams and Collyer 2018. Syst. Biol.

ΣlogLindiv Consequences



Multivariate PCM not trivial

-Algebraic generalizations 
appropriate mathematically

-Useful for hypotheses of:

1: Phylogenetic signal (Kmult)
2: ANOVA/regression (D-PGLS)
3: Correlation (PPLS)
4: Net evolutionary rates (σ2

mult)

Current limitation: Brownian motion only

Analysis Type logLMult ΣlogL PCL MultG

Phylogenetic Signal - - - Yes (Kmult)

Phylogenetic ANOVA - - NO Yes 
(D-PGLS) 

Phylogenetic Regression - - NO Yes 
(D-PGLS)

Phylogenetic Covariation (blocks of 

variables)

- - NO Yes 
(P-PLS)

Comparing Evolutionary Models: 

BM1 vs BMM

Limited
(when 
N>>>p)

- NO Yes
(net rate 

only)

Comparing Evolutionary Models: 

BM1 vs BMM vs OU1 vs OUM

No No No -

Adams and Collyer 2018. Syst. Biol.
Adams and Collyer, 2019. Ann. Rev. Ecol. Evol. Syst.

Conclusions and Future Directions



Multivariate PCM not trivial

-Evolutionary model 
comparisons remain 
a challenge

Multivariate Ornstein-Uhlenbeck models a particular challenge

We lack a robust multivariate method for evolutionary model 
comparisons!

Analysis Type logLMult ΣlogL PCL MultG

Phylogenetic Signal - - - Yes (Kmult)

Phylogenetic ANOVA - - NO Yes 
(D-PGLS) 

Phylogenetic Regression - - NO Yes 
(D-PGLS)

Phylogenetic Covariation (blocks of 

variables)

- - NO Yes 
(P-PLS)

Comparing Evolutionary Models: 

BM1 vs BMM

Limited
(when 
N>>>p)

- NO Yes
(net rate 

only)

Comparing Evolutionary Models: 

BM1 vs BMM vs OU1 vs OUM

No No No -

Adams and Collyer 2018. Syst. Biol.
Adams and Collyer, 2019. Ann. Rev. Ecol. Evol. Syst.

Conclusions and Future Directions
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